
Playing Hide and Seek with Dalvik Executables

Axelle Apvrille, Fortinet, FortiGuard Labs
120, rue Albert Caquot 06410 Biot, France

aapvrille@fortinet.com∗

Abstract

Android’s Dalvik Executables (DEX) are full of sneaky corners, and this is just perfect for a game of
Hide and Seek.

The first round of the game begins by hiding an entire method within a DEX file. The method hides
so well that all common disassemblers (baksmali, apktool, Androguard, IDA Pro...) are unable to see it.
Nevertheless, we show the method is still there as we can call it and execute it! The mechanism exploits a lack
of verification of methods’ layout and it is particulary convenient to hide a behaviour. Possible implications
are the bypassing of market places’ screening or anti-reversing of malware.

Then, like in the Hide and Seek game, the second round focuses on finding the hidden parts. The paper
explains where to look for hidden data, and we provide a script to un-cloak the DEX file. The method shows
back again.

The paper also discusses the PoC code and script that demo hiding and unhiding.

1 (Short) Introduction

This paper presents a trick which is capable of hiding parts of code in Android executables. The hidden parts
are invisible (or difficult to see) to reverse engineers. A Proof of Concept application is detailed at section 7, as
well as a helper tool in section 8.

The other sections focus on explaining how the tweak works. We provide some short background informa-
tion on Android executables in section 2, keeping the focus on the only fields we need for the tweak. Then, we
explain the concept of hiding methods in section 3. Sections 4 and 5 explain how to (re)package the modificated
application: creating a valid patched executable and including it in an application. Hiding is only one part of
the trick: we are also capable of actually invoking (i.e calling and using) the hidden method. We show how in
section 6.

Finally, at the end, the paper discusses possible solutions to spot and unhide hidden parts (section 9).

2 Dalvik Executables

DEX files, Dalvik Executables, are the heart of Android applications: they contain the compiled classes of the
applications, using Dalvik bytecode [AOSa] which is similar (but not exactly identical) to Java bytecode. Their
format is defined in [AOSb] and our hide-and-seek technique consists in tweaking it.

We provide below a short overview of the structure of DEX files and important fields for hiding data. The
most important parts of a DEX file are illustrated at Figure 1:

∗see additional info for submission in section 11.

1

class_data_item
of static/instance fields
of direct/static methods

class_data_item
of static/instance fields
of direct/static methods

header

string_ids: offset to each string_data_item

type_ids

proto_ids

field_ids

class_defs:
Index of class and superclass

Offset to corresponding class_data_item
etc

method_ids:
Method's class = index in type_ids

Method's prototype = index in proto_ids
Method's name = index in string_ids

link_data

string_data_items:
Size / Hello
Size / PostURL
...

Instructions

class_data_item
of static/instance fields
of direct/static methods

Debug info

Annotations

encoded_method #1

encoded_method #2

A
R
R
A
Y
S

Figure 1: Main parts of a Dalvik Executable

• a Header - with file hash, checksum and sizes and offsets to parse the file

• a Data section, with the code instructions, the strings, fields, debug info etc. It can be seen as the core of
the DEX file. The other sections of the file don’t store any data, only offsets to data.

• Several arrays: an array of strings identifiers, of type identifiers, prototype identifiers, field identifiers,
method identifiers and class identifiers. The entries of those arrays reference offsets to relevant data in
the data section, or indexes to other arrays. For example, if a class is named ”MrHyde”, there is an entry
in the class defs array for that class. In that class defs entry, the name of the class consists in
an index in the strings array. The corresponding entry in the string ids arary provides an offset to a
string data item in the data section, which consists in the size of ”MrHyde” followed by the string
itself (”MrHyde”).

Each class is described in the data section, by a structure named class data item which lists particular
fields and methods of the class. The methods are organized in two different arrays: direct methods (static, private
or constructor methods) and virtual methods(the other ones). Each method is declared in class data item

2

as a structure named encoded method, as follows:

• a method idx diff. [AOSb] defines this as ”index into the method ids list for the identity of this method
(includes the name and descriptor), represented as a difference from the index of previous element in the
list. The index of the first element in a list is represented directly”. So, basically, this is an increment in
indexes to entries of method ids. If the previous method was reading index 3, and the next method has
method idx diff = 1, then the index for this next method is 3 + 1 = 4.

• an access flag. Typically ACC PUBLIC = 0x1 for public access. There are other flags such as ACC PRIVATE,
ACC PROTECTED, ACC STATIC, ACC FINAL etc.

• offset to the code. The offset starts from the beginning of the DEX file.

3 Hiding methods

This section explains how to hide a given method of a given class in a Dalvik Executable. Globally, the steps
are as follows:

1. Patch the method’s declaration in the DEX filein its encoded method entry. Basically, the patch
consists in modifying the declaration of the method to hide, so that it points to another existing method.
We detail the patch in this section.

2. Re-computing the DEX file: its SHA1 hash and Adler checksum must be re-computed and the DEX
header fixed accordingly. We explain how to do this in Section 4.

3. Re-build the APK from the updated DEX file. This is detailed in Section 5.

Let’s investigate how to patch the method’s declaration. Actually, there are several alternatives. For instance,
we can patch so that we refer twice to the previous method. This case is illustrated at Figure 2. It consists in the
following modifications:

• Set hidden method’s idx to 0. Consequently, the Dalvik verifier sees this method under the name and
signature descriptor of the previous method.

• No need to modify the access flag. Actually, it is possible to change it if we want to (but usually there
is no need to). We must ensure that the new flag does not change the method’s category (direct, virtual).
Precisely, this means that if we are patching a virtual method, the patched access flag must not include
private, static or constructor. Reciprocally, if we are patching a direct method, be sure to have the access
flag include one of those values.
A wrong access flag prevents the application from being installed

Failure [INSTALL_FAILED_DEXOPT]

• Set code offset to offset of the previous method. Using a bad code offset results in complaints from the
verifier.

For the chaining to be complete, the declaration of the next method must also be patched: its idx must be
increased to jump over the hidden method:

next method idx = original next method idx+ original method idx (1)

3

Method ids

[1] A

[2] B

[3] C

[1] A[1] A[1] A

01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da
01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da
01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da
01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da
01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da
01 f4 d8 45 67 0a 11 09 33 98 a1 22 73 d1 cc ba de 05
12 34 cd 14 87 46 54 00 15 e1 ee cc b1 2d 17 a0 78 da

A

B
C

Method A
idx

code

Method B
idx

code

Method C
idx

code

Code

Figure 2: Hiding a method in a Dalvik Executable. The red links correspond to the patch to hide method B.
Method A is referenced twice both for indexes and code. Method B is never referenced.

4

Description Method idx Access
flag

Code offset (2
bytes)

Next method idx

Hide a method - ref-
erence twice previous
method

0 keep code offset for pre-
vious method

original next method idx
+ original method idx

Hide a method -
reference twice next
method

original next method idx
+ original method idx

keep code offset for next
method

0

Table 1: Two different techniques to hide a particular method in a Dalvik Executable

Instead of referring twice the previous method, it is also possible to refer twice the next method. In that
case, the hidden method’s idx is incremented to jump over the hidden method, the code offset refers to the next
method, and the idx of the next method is set to 0.

Note that in either cases the number of methods of class (direct methods size or virtual methods size) must
not be changed. The class still carries the information for the hidden method. It’s just that it does not show.

In an Android challenge of Hashdays 2012 [Apv12b], I demonstrated a very special case of method hiding:
hiding the only virtual method of a class. In that particular situation, the hiding is simpler because we can
purely erase the last entry: set the number of virtual methods of the class (virtual methods size) to 0,
and nullify the method’s entry: 0 for idx, 0 for access flag, 0 for code offset. Hiding any other method is however
a bit more complicated as we have seen.

4 Building a valid DEX file

After modification of its contents, a DEX file’s header must be modified to be valid. The changes are located at
the beginning of the header. First, there is a DEX magic value which should not be modified. Then, there are
two fields: an Adler32 checksum and a SHA-1 hash of the file. Checksums are used to detect transmission or
storage errors. Cryptographic hashes are used to ensure file’s integrity. Both fields are computed over the rest of
the file, i.e the SHA-1 hash is computed over the entire file excepted the DEX magic, the checksum and itself,
and the checksum is computed over the entire file excepted the DEX magic and itself.

So, to re-build a valid DEX, we must do the computations in the following order:

1. Compute the DEX’s SHA-1 and write it in the header

2. Compute the DEX’s checksum and write it in the header. Note that the checksum includes data from the
SHA-1 hash

Once this is done, the DEX is valid. Note the helper tool detailed in section 8 handles this step.

5 Re-building an APK

Once the DEX file is ready, we need to re-package it as an Android application (.apk). This step is not difficult
for someone used to building Android applications in command lines, but may sound more obscure to Eclipse
developers.

• Unzip the original APK and retrieve the compiled Android manifest (AndroidManifest.xml) and
resources (strings in resources.arsc, layout, images...)

5

• Zip together the original manifest and resources with the new, modified, DEX file (classes.dex)

• Sign the package using jarsigner and developer keys

The process is particularly well suited to be automated in a Makefile (see an example of Makefile in Ap-
pendix).

6 Invoking a hidden method

Invoking a hidden method consists in the following steps:

1. Open the DEX file of the current application and put it in an array in memory. This is done using a
method named openNonAsset of android.content.res.AssetManager. This method opens
non-asset files as assets. This method is not directly accessible, so Java reflection must be used [Str12].

2. Unpatch the DEX file array. Basically, the idea is to undo what was done to hide the method at first (see
section 3). The original values are restored.

3. Open the unpatched DEX array as a new class. This is done by calling, via reflection, openDexFile()
on the DEX byte array. The method returns a ”cookie”, which is actually a pointer to an internal data struc-
ture for the DEX. Then, load the unpatched class (corresponding to the previously unpatched bytes) using
defineClass(). This method uses the cookie returned by openDexFile() to load the class.

4. Search for the hidden method in the unpatched DEX file with getDeclaredMethods())

5. Invoke the hidden method on an object instance from the unpatched DEX file

Example source code for this is provided in Appendix. A few logs in the code confirms the hidden method
is called:

$ adb logcat
...
I/HideAndSeek(644): invoking thisishidden() with arg=true
I/HideAndSeek(644): In thisishidden(): set mrhyde=true

There is nonetheless an important limitation to understand when calling the hidden method. For the oper-
ating system, technically speaking, the classes and methods of the original DEX are different from the classes
and methods of the patched DEX, even though they share the same name and namespace. It is consequently
impossible to have a hidden method modify instance or static fields of a class: the fields of the original class are
not affected by changes in fields in the patched class and reciprocally. Fortunately, there are alternatives, such
as using shared files.

7 Proof of Concept application

A PoC application has been implemented and successfully tested on recent Android emulators (e.g 4.0.3, 4.1).
It demonstrates how to invoke a hidden method.

6

Figure 3: Initially, Dr Jekyll has the right person-
ality

Figure 4: When the button is pressed - and the hid-
den method is called - Dr Jekyll changes into the
evil personality of Mr Hyde

Figure 5: The hidden method,
thisishidden(), does not show to dex2jar
0.0.9.13

Figure 6: The hidden method does not show either
to IDA Pro 6.3

7.1 Demonstration

The demo application is made of two classes, DrJekyll and MrHyde, which are characters of the famous novel
”The strange case of Dr Jekyll and Mr Hyde” [Rob86]. In this novel, Dr Jekyll suffers, without being aware of
it, from split personalities, and from time to time, he changes into the evil personality of Mr Hyde, Then he’s
back to the ’normal’ Dr Jekyll.

The demo application is a virtual representation of Dr Jekyll. At first, it starts with the identity of Dr Jekyll.
When the end-user presses the personality changing button, it (virtually!) changes into Mr Hyde’s identity.
However, changing to Mr Hyde’s identity is only possible by the call of a hidden method (in our case, the hidden
method is named thisishidden()). There is no other way to switch to Mr Hyde’s identity (not cheating!).
If the application displays ”** I am Mr Hyde ***”, this means the call has been successful.

So, basically, we are going to switch to MrHyde’s identity using a hidden method that does not show to any
Android disassembler: see Figures 5 and 6.

The hidden method does not show either to Androguard 1.7 using method name completion.

In [2]: d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.ME

7

d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.METHOD_bytesToHex
d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.METHOD_init
d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.METHOD_invokeHidden
d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.METHOD_openNonAsset_Ljava_lang_StringLjava_io_InputStream
d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.METHOD_whoami

If we list methods via interactive Python commands, a meticulous analyst might notice two methods are
listed for openNonAsset():

In [10]: methods = d.CLASS_Lcom_fortiguard_hideandseek_MrHyde.get_methods()
In [11]: for method in methods:

print method.get_name();
....:

<init>
bytesToHex
invokeHidden
openNonAsset
openNonAsset
whoami

Same for Baksmali 1.4.2 which detects a ”method with a duplicate signature”. This is because our patch
assigns to the hidden method the same code offset as the previous method, which is openNonAsset() (see
Table 1).

#Ignoring method with duplicate signature
#.method public openNonAsset(Ljava/lang/String;)Ljava/io/InputStream;
...

Nevertheless, neither Baksmali nor Androguard show the name or the code for the hidden method.

7.2 Implementation details of the application

The implementation of class DrJekyll is short:

• Displaying the view

• Retrieving the current personality: this corresponds to the whoami() method on a MrHyde object in-
stance (see code lines 5-6 in 7)

• Calling the hidden method, thisishidden, when the button is pressed (see lines 9-13). Actually,
thisishidden is called indirectly: pressing the button calls a method named invokeHidden() of
MrHyde. This method is then in charge of the tricky part which consists in calling thisishidden()

The MrHyde class is more interesting. First of all, the current personality of Dr Jekyll / Mr Hyde is stored
in a fixed file on the device. This file is read using whoami(), and written by calling the hidden method
thisishidden(). The code uses no other way to modify the current personality. In particular, we are not
accessing the identity file through another application, command line scripts nor hacking Dr Jekyll’s TextView to
display another string. Also, note that a non-existant identity file (which is the default initial situation) or invalid
values map to Dr Jekyll’s identity. So, changing into Mr Hyde requires an explicit call to thisishidden()
where the boolean argument ismrhyde is explicitly set to true.

For reminder, the reason for reading the current identity through a file is explained in section 6: a static
field would not have worked because there would have been two static fields: one for the original class and one

8

1 public class DrJekyll extends Activity {
2 ...
3 public void onCreate(Bundle savedInstanceState) {
4 ...
5 hyde = new MrHyde(this.getApplicationContext());
6 txtView.setText(hyde.whoami());
7

8 validateBtn.setOnClickListener(new View.OnClickListener() {
9 public void onClick(View v) {

10 Log.i("HideAndSeek", "DrJekyll: calling invokeHidden");
11 hyde.invokeHidden();
12 txtView.setText(hyde.whoami());
13 Log.i("HideAndSeek", "DrJekyll: onClick done");
14 }
15 });
16 }
17 }

Figure 7: The implementation of DrJekyll’s class is very simple

for the patched one. With a slightly different approach to implementing Dr Jekyll’s split identities, it would
however have been possible not to use files. For example, the identity could have been stored as an instance field
of DrJekyll class, and returned by the invokeHidden() method. The implementation in this paper is just one way
of doing it.

How to load a hidden method has been convered by section 6. We follow those steps, sample code is
provided in Appendix. We open the DEX file of the application, patch the DEX, list the methods and find the
hidden method. We cannot invoke the hidden method, which belongs to the patched MrHyde class onto an
object of the non-patched class: Android forbids it. Therefore, we must instantiate a new object for the patched
class. Finally, we invoke the hidden method on the new object, using Java reflection, and provide the identity
for MRHYDE as argument.

8 Patching/Restoring tool

I wrote a Perl script to automate the hiding or revealing of methods in DEX files. This script will be made
available after the talk. It offers three functionalities:

1. Viewing the layout of the DEX file (without modification). This is useful to find and decide the offsets
and values to patch.

./hidex.pl --input classes.dex --class "Lcom/fortiguard/hideandseek/MrHyde;"

...
direct methods:

method #0- name=<init> (0x13) (position=0x2C87)
access = 0x10001 (65537)
code_offset= 0xD74 (3444)
idx_diff = 19

...

2. Patching the description of a method. The end-user provides the new values for each field.

9

Figure 8: Declare a new function at the hidden method’s location to reveal the hidden code

./hidex.pl --input classes.dex --patch-offset 0x2c99 --patch-idx 0
--patch-flag 1 --patch-code 0x13d8 --patch-next-idx 2

9 Solutions: discussion

Hiding a method in a DEX file can be used in several ways, such as bypassing market places’ screening or as
an anti-reversing technique. In the case of malware, anti-virus analysts are fortunately not helpless. They can
spot anomalies such as strings present in the DEX but not used (those are strings used by the hidden method) or
duplicate method signature after disassembly (see Section 7).

Once the analyst suspects a hidden method, he/she can reveal it using one of the following methods:

• IDA Pro. Inspect each method and look for undefined data at the end. Try to declare that data as a new
function (shortcut ”P” in IDA Pro of the first undefined byte). When placed at the right location, IDA Pro
will treat the following byte-code as valid Dalvik instructions and reveal the hidden method. See Figure
8.

• Androguard. I wrote a Python script using Androguard that disassembles a DEX at any offset. The tool
is named androdis, and has now been added to Androguard’s repository [Apv12a]. Use it at the exact
location where the hidden method should be to reveal the hidden instructions. Alternatively, those actions
can also be performed from Androguard’s interactive shell (androlyze -s).

$./androdis.py -i classes.dex -o 5196
0 0x0 move-object/16 v2, v3

10

1 0x6 move/from16 v0, v10969
2 0xa nop
3 0xc sub-double/2addr v0, v0
4 0xe nop
5 0x10 const-string v4, ’HideAndSeek’
6 0x14 new-instance v5, Ljava/lang/StringBuilder;
7 0x18 invoke-direct v5, Ljava/lang/StringBuilder;-><init>()V
8 0x1e const-string v6, ’In thisishidden(): set mrhyde=’
..

• Unpatch the DEX file, and basically undo what was done to hide the method. Then re-sign, checksum
the DEX and re-build the APK (section 5).

From an OS point of view, Android could be patched to verify the consistency of encoded method fields,
like it is done for string identifiers. In particular, the OS could verify each encoded method entry references a
different method signature and offset. Google has been notified on June 24th (Ref. 1314462818).

10 Conclusion

This paper exploits a lack of format verification in Dalvik Executables to hide, at will, a method from decom-
pilers. The hidden method remains in the DEX file, it is just invisible. With an appropriate piece of code, it
can even be called and get executed. A Proof of Concept application demonstrating this has been implemented,
along with a tool able to patch DEX files.

From a defensive aspect, the paper also provides 3 different ways to spot hidden methods. Alternatively, the
Android OS could be patched to include verifications.

11 Additional information

• Presenter: Axelle Apvrille, France

• Employer: Fortinet

• Brief biography:

Axelle Apvrille’s is currently a Senior Antivirus analyst and researcher at Fortinet, where she
more specifically looks into mobile malware, and exercises her security blogger talents. On
mobile malware, she is best known for her reverse engineering of Symbian/Yxes and Zitmo,
the mobile add-on to ZeuS botnets.
Axelle presented at various conferences, including BlackHat, RSA, ShmooCon, VB, EICAR
(best paper award)...
Known in the community by her more or less mysterious handle ”Crypto Girl”, she changes
from office worker during the day into mighty hacker at night. Like Neo, but with a superhero
costume.

• List of publications and papers: http://wikisec.free.fr/papers/papers.html

• Presentation or educational experience: see bio. Presented a several conferences, I’ve also been a lecturer
in several French engineering schools.

11

• Reason why this material is innovative or significant: as far as I know, this is pioneer work regarding
steganography within Dalvik Executables. Moreover, I believe that the mix between technical explana-
tions and demos in this talk should be attractive to attendees.

• Prepared material: this paper, see code in appendix.

• Already presented: no, this has not been presented yet.

Acknowledgements

I ought to thank Pau Oliva (@pof) who worked on scripting a command to hide any executable. He was ent-
housiastic about this idea of hiding methods in a DEX file, and I thank him for pushing the idea forward... and
keeping my motivation up :)

Appendix: source code

Example of Makefile to build an APK with a modified DEX

See code at Figure 9

Example source code for invoking a hidden method
See code below.

12

ROOTDIR = /foo/bar
PROJECTDIR = $(ROOTDIR)/app
MANUFACTUREDIR = $(ROOTDIR)/re-manufactured
ZIP = zip
JARSIGNER = jarsigner
JARSIGNER_OPTIONS = -verbose
KEYSTORE = $(PROJECTDIR)/yourkeystore
STOREPASS = theunsecurepassword
ALIAS = youralias

all: release.apk

release.apk: release-unsigned.apk
$(JARSIGNER) $(JARSIGNER_OPTIONS) -keystore $(KEYSTORE)
-storepass $(STOREPASS) -signedjar release.apk
release-unsigned.apk $(ALIAS)

release-unsigned.apk: resources.arsc manifest classes.dex logo.png main.xml
$(ZIP) release-unsigned.apk AndroidManifest.xml resources.arsc

classes.dex res/*/logo.png res/layout/main.xml

manifest: $(PROJECTDIR)/bin/release-unsigned.apk
unzip $(PROJECTDIR)/bin/release-unsigned.apk AndroidManifest.xml

same for main.xml, resources.arsc etc

clean:
rm -f release.apk
rm -f release-unsigned.apk
rm -f AndroidManifest.xml
rm -f resources.arsc
rm -rf res/
rm -f *˜

Figure 9: Makefile for re-building an APK

13

public void invokeHidden() {
int dexlength = 11980;
byte[] dex = new byte[dexlength];

// load this DEX file
InputStream localInputStream = openNonAsset("classes.dex");
try {

dexlength = localInputStream.read(dex, 0, dexlength);
Log.i("HideAndSeek", "invokeHidden(): read "+dexlength + " bytes");
// modify dex here and un-hide hidden method
int patch_index = 0x2da9;
dex[patch_index++]= 1; // method_idx
dex[patch_index++]= 1; // access flag
dex[patch_index++]= (byte)0xbc; // code offset
dex[patch_index++]= (byte)0x29;
dex[patch_index++]= 1;

// re-compute the checksum and hash
MessageDigest digest;
digest = MessageDigest.getInstance("SHA-1");
digest.reset();
digest.update(dex, 32, dexlength-32);
digest.digest(dex, 12, 20);
Log.i("HideAndSeek", "invokeHidden(): redigesting");

Adler32 checksum = new Adler32();
checksum.reset();
checksum.update(dex, 12, dexlength-12);
int sum = (int)checksum.getValue();
dex[8] = (byte)sum;
dex[9] = (byte)(sum >> 8);
dex[10] = (byte)(sum >> 16);
dex[11] = (byte)(sum >> 24);
Log.i("HideAndSeek", "invokeHidden(): checksum");

// get DexFile class object
// search for openDexFile and defineClass methods
Class dexFileClass = context.getClassLoader().loadClass("dalvik.system.DexFile");
Method[] arrayOfMethod = Class.forName("dalvik.system.DexFile").getDeclaredMethods();
Method openDexFileMethod = null;
Method defineClassMethod = null;
int cookie = 0;
Log.i("HideAndSeek", "invokeHidden(): openDexFile");

for (int i=0; i< arrayOfMethod.length; i++) {
if (arrayOfMethod[i].getName().equalsIgnoreCase("openDexFile")

&& arrayOfMethod[i].getParameterTypes().length == 1) {
openDexFileMethod = arrayOfMethod[i];
openDexFileMethod.setAccessible(true);
Log.i("HideAndSeek", "openDexFile found");

}
if (arrayOfMethod[i].getName().equalsIgnoreCase("defineClass")

&& arrayOfMethod[i].getParameterTypes().length == 3) {
defineClassMethod = arrayOfMethod[i];
defineClassMethod.setAccessible(true);
Log.i("HideAndSeek", "defineClass found");

}
}

// call openDexFile()
Object[] arrayOfObject = new Object[1];
arrayOfObject[0] = dex;
Log.i("HideAndSeek", "dex header: "+MrHyde.bytesToHex(dex,0, 34));

if (openDexFileMethod != null) {
cookie = ((Integer)openDexFileMethod.invoke(dexFileClass, arrayOfObject)).intValue();
Log.i("HideAndSeek", "openDexFile invoked. cookie="+cookie);

}

14

// call defineClass -> get an object for the new MrHyde class
// invoke: private native static Class defineClass(String name, ClassLoader loader, int cookie);
Object[] params = new Object[3];
params[0] = "com/fortiguard/hideandseek/MrHyde";
params[1] = dexFileClass.getClassLoader();
params[2] = Integer.valueOf(cookie);
Class patchedHyde = null;
Log.i("HideAndSeek", "retrieving patched MrHyde class");
if (defineClassMethod != null) {

patchedHyde = (Class) defineClassMethod.invoke(dexFileClass, params);
}

// search for thisishidden in the new class object
// invoke: public void thisishidden()
Method thisishiddenMethod = null;
Log.i("HideAndSeek", "getting methods in patched MrHyde");
Method[] allMethods = patchedHyde.getDeclaredMethods();
Log.i("HideAndSeek", "parsing methods in patched MrHyde:");

for (int j=0; j<allMethods.length; j++) {
Log.i("HideAndSeek", "patched MrHyde method: "+allMethods[j].getName());
if (allMethods[j].getName().equalsIgnoreCase("thisishidden")) {

thisishiddenMethod = allMethods[j];
Log.i("HideAndSeek", "thisishidden() method has been found");

}
}
Log.i("HideAndSeek", "parsing done.");

// invoke: public void thisishidden(boolean);
if (thisishiddenMethod != null) {

Object[] arg= new Object[1];
Log.i("HideAndSeek", "before new Instance()");
// instantiate an object of the new MrHyde class
Object obj = patchedHyde.getDeclaredConstructor(Context.class).newInstance(context);
Log.i("HideAndSeek", "after new Instance");

// call thisishidden on that object instance
arg[0] = Boolean.valueOf(true);
Log.i("HideAndSeek", "invoking thisishidden() with arg=true");
thisishiddenMethod.invoke(obj, arg);

} else {
Log.i("HideAndSeek", "thisishidden() not found");

}
}
catch(Exception exp) {

Log.e("HideAndSeek", "Exception caught in invokeHidden(): "+exp.toString());
}

}
}

References

[AOSa] Bytecode for the Dalvik VM. http://source.android.com/tech/dalvik/

dalvik-bytecode.html.

[AOSb] .dex — Dalvik Executable Format. http://source.android.com/tech/dalvik/

dex-format.html.

[Apv12a] Axelle Apvrille. Androdis source code, 2012. https://code.google.com/p/androguard/

source/browse/androdis.py.

15

[Apv12b] Axelle Apvrille. Guns and Smoke to Defeat Mobile Malware, November 2012. Hashdays Confer-
ence, Lucerne, Switzerland.

[Rob86] Robert Louis Stevenson. Strange Case of Dr Jekyll and Mr Hyde. Longmans, Green and co, 1886.

[Str12] Tim Strazzere. Dex Education: Practising Safe Dex. In BlackHat USA, July 2012.

16

