
AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

1VIRUS BULLETIN CONFERENCE OCTOBER 2011

AN OPENBTS GSM REPLICATION
JAIL FOR MOBILE MALWARE

Axelle Apvrille
Fortinet, 120, rue Albert Caquot, 06410 Biot

Sophia Antipolis, France

Email aapvrille@Fortinet.com

ABSTRACT
There is one golden rule in the anti-virus industry that all AV
analysts are very cautious about: making sure they do not
spread samples which are under study. On PCs, vendors
commonly use replication hosts in a very restricted
environment (virtual machines, fi rewalls, limited network
connection etc.).

Unfortunately the task is more complicated on mobile phones,
both because fewer tools are available and because nearly all
mobile viruses require either GSM or an Internet connection to
operate correctly.

We have consequently built a fake GSM operator using the
open source OpenBTS project to help us analyse mobile
malware live while being sure the malicious programs are not
inadvertently propagated on the network of a real operator.

This paper explains how we set up our GSM network and then
how to use it for the analysis of mobile malware. Using recent
mobile malware samples, we show how to trace calls or sniff
SMS messages. We also enhance this GSM network with a
fi rewalled Wi-Fi and explain how to deal with more advanced
mobile malware which communicates with remote hosts on
the Internet. Finally, we conclude with the current limitations
and future work concerning this replication architecture.

1. INTRODUCTION
All anti-virus vendors follow a few implicit rules of good
conduct. Among these, an important one is not to spread
malware. A corollary is not to leak any information the
malware gang might be using. For the daily routine of AV
analysts, static analysis of malware complies with these rules
and is unrestricted. At some point, however, all experienced
analysts know they need to see the malware actually ‘run’,
whether it is to help them reverse diffi cult parts or just go
faster in their job. This requires much more caution and can
only be done in a strictly confi ned environment. Typically, PC
samples are run in virtual machines (VirtualBox, VMware etc.)
or on physical replication hosts which belong to a specifi c and
separate network, without any connection to the Internet or
intranets.

The task is unfortunately much more complicated for malware
on mobile phones. The main reason is that most mobile
malware uses or propagates on the GSM network, which
cannot be confi ned as easily as the IP network. GSM is based
on SS7 [1], which is totally different from the traditional IP
protocol stack. Hence, standard fi rewalls, proxies, DNS,
packet sniffers etc. do not work over GSM. Furthermore, AV
vendors cannot easily prevent access to GSM networks: it is
not a matter of disconnecting a cable (GSM is ‘over the air’).
Calling the telecommunications operator to ask him not to
cover the AV lab is obviously not possible either. The limited

computing power of mobile phones, the variety of network
interfaces (Bluetooth, USB, infrared, Wi-Fi...), operating
systems and phone models are some of the other obstacles to
controlling mobile malware.

Facing those problems in our AV lab, we decided to work on a
solution and build our own fake GSM operator with a range
limited to our lab. This fake operator is based on Universal
Software Peripheral Radio hardware (USRP) and on an open
source project named OpenBTS. The overall cost of the
equipment is a little over US$1,000. We register our test lab
phones to this fake operator and confi gure OpenBTS to retain
all GSM traffi c within our walls. Thus, we build a replication
jail for mobile malware.

In this paper, we demonstrate the usefulness of such a jail for
mobile malware analysis. In Section 2, we examine other ways
to retain mobile malware and why they are either insecure or
impractical. Then, we provide some background information
on GSM networks and what functionalities the OpenBTS
project provides on that network.

In Section 4, we present the architecture of our
OpenBTS-based jail. We then explain how to trace calls or
inspect SMSs a piece of malware sends. Some advanced
mobile malware does, however, require access to the Internet
to operate correctly. So, in Section 6 we explain how to deal
with such malware without breaking golden AV rules. Finally,
in Section 7, we present the results of our experimentation
when using this mobile malware jail to analyse a set of
malicious samples. In our conclusion we show how useful the
work has been and the limitations we encountered, leading
onto ideas for enhancing the work.

Throughout this paper, malware names correspond to
Fortinet’s naming and can be looked up in Fortinet’s
encyclopedia [2] for more details.

2. ALTERNATIVES
For the control and confi nement of mobile malware during its
analysis, several solutions can be contemplated.

We list below some solutions we considered and why we
believe they are not fully adequate.

• Removing the SIM. A radical solution to keep the
malware on the phone is to remove the phone’s SIM card.
In fact, this is not fully secure as Wi-Fi, Bluetooth and
cable connections do not require the SIM card. However,
this is not a blocking issue because those network
interfaces are usually easy to turn off (by use of a specifi c
menu or hardware button) and, in addition, they are
seldom used by modern mobile malware. The last
well-known worm using Bluetooth was SymbOS/BeSeLo,
which already dates back to 2008.

 The real issue with removing the SIM card is simple:
some phones, such as the Nokia 6600, just refuse to work
without a SIM. In other cases, when the phone will
operate without a SIM, the major problem is that many
pieces of malware do not run properly without access to a
GSM network, hence the SIM is required. This point is
detailed in the next alternative, putting the phone offl ine,
which shares the same problem.

• Putting the phone offl ine or into fl ight mode. Most
phones offer a quick way to put the phone offl ine or into
fl ight mode. The solution is apparently secure, except on

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2011

some phones the offl ine mode does not turn off Wi-Fi,
Bluetooth and other interfaces, and in both offl ine and
fl ight modes, a malicious program could switch the
phone back online. On Symbian phones, for example, the
offl ine mode is known as a profi le (EProfi leOffLineId)
and it may be reverted to EProfi leGeneralId (or
EProfi leSilentId for silent mode) by the function
MProEngEngine::SetActiveProfi leL(). This requires the
WriteDeviceData privilege, but this is not usually a
problem for malware as users tend to install any
application they badly want whatever it asks for.
Malware such as SymbOS/Downsis, SymbOS/
NMPlugin, SymbOS/Yxes and SymbOS/Zitmo use this
privilege. We haven’t encountered any malware
switching from one profi le to another yet, but there is
nevertheless a risk.

 For analysts, the real problem with putting the phone
offl ine is that many pieces of malware do not behave the
same way when they have no GSM network available.
On an offl ine phone, SymbOS/Album does not show it is
trying to send two SMSs, SymbOS/Acallno – a trojan
spyware – cannot be activated and hence does not show
its malicious intent, and only one SMS (instead of two)
is sent by SymbOS/Feixiang because the code gets stuck
sending the fi rst SMS and never gets to the code that
sends a second one. All these examples are detailed in
Section 7.

 So, putting a phone offl ine may be (reasonably) secure in
terms of confi ning the sample, but, as a side effect, it also
hides many of its features.

• Using Faraday cages. This is physics: Faraday cages
block electric fi elds and they can consequently be used to
isolate a contaminated phone from the rest of the world.
The problem with Faraday cages is a practical one: how
to build a Faraday cage from which the AV analyst can
see and operate the mobile phone.

 A researcher, Jed Daniels, made an attempt at building a
semi-transparent Faraday cage in which he could place
his laptop [3]. The resulting cage does successfully block
electric signals, but the screen is diffi cult to read (which
would be even worse for mobile phones) and – another
issue – there is no access to the keyboard. This is a
critical problem for analysing mobile malware as the
analyst needs to press the phone’s keys.

 To remedy this issue, it is possible to build a very large
Faraday cage, like a room, and place all the laboratory’s
mobile equipment in there. The Berlin Institute of
Technology uses one like this [4]. Be aware that such a
cage is very expensive, not to mention the weight of the
cage which may have an impact on the architecture of
the building.

 Bare Faraday cages all face another problem: inside the
cage, the phone is unable to reach a GSM network, and
as we said previously this alters malware’s behaviour.
Consequently, there is no other solution than placing a
standalone GSM operator in the cage such as an
OpenBTS-based operator as detailed in this paper.

• Using a virtual machine. Virtual machines have always
been favoured by malware analysts because they contain
malware and are so convenient: they run on a PC; logs,
traces and screenshots are easy to make etc. For mobile

phones, the Android Emulator
(http://developer.android.com/guide/developing/tools/
emulator.html) has been used for numerous malware
analyses. It boots any version of Android, and offers
additional features such as sending fake SMSs, calls,
geolocalization and logging.

 For Java midlets, the J2ME Emulator
(http://www.oracle.com/technetwork/java/download-
135801.html) is quite handy too. It requires a .jad and .
jar to run the midlet. If the .jad is unavailable (frequent),
it is easy to create a fake one from the .jar. A BlackBerry
smartphone simulator (http://www.blackberry.com/
developers/simulators) exists too.

 There are, however, two problems with virtual machines.
First, as with the other solutions, the malware does not
have access to a real telecom operator, and as we have
already explained this modifi es the malware’s behaviour.
For instance, if Java/Konov is run in the J2ME emulator,
it loops trying to send an SMS to short number 4124 and
never shows it would send an SMS to 4125, 1171 and
5537 too. Additionally, there are a few cases where the
malware is expecting real hardware and fails in a virtual
machine (e.g. Android/DrdDream). Sooner or later, too,
we are likely to see anti-VM tricks in mobile malware
(as we frequently encounter with PC malware), hence it
won’t run properly.

 Second, virtual machines unfortunately do not exist on all
systems. Notably, there aren’t any for Symbian. A project
named Syborg, consisting of Symbian on QEMU, was
started a long time ago, but it now seems to have been
abandoned; its installation is complex, with many obsolete
and broken links. Symbian developers may be aware of
Carbide’s simulator, but unfortunately it is only a
developer’s tool and cannot run real packages (compiled
for ARM). As far as I know, iOS faces the same problem:
the iOS simulator is for development code only, and
third-party simulators, such as http://iphone4simulator.com,
are only suitable for testing web applications. It is of little
help with analysing malicious samples.

• Using an OpenBSC-based mobile malware jail. This
solution is very similar to the one presented in this paper.
It uses the same idea: to build a standalone local GSM
operator for test phones. The only difference is at
implementation level: it relies on the open source
OpenBSC project (http://openbsc.osmocom.org/trac), not
OpenBTS, and must be coupled with a BTS such as a
Siemens BS11 microBTS or an ip.access nanoBTS.

 This architecture (OpenBSC+nanoBTS) has never been
used for mobile malware analysis, but has been used to
test and fuzz mobile phones [5]. The only problem with
this alternative is its price: about six times the price of
the solution presented in this paper, with the same level
of results. Indeed, a nanoBTS is sold for approximately
US$6,200. Second-hand units have been seen on the
market at US$2,800.

Table 1 summarizes solutions for controlling mobile malware.
It compares them regarding overall simplicity, cost, risk of
spreading or leaking information, and accuracy of malware
analysis in such an environment. Most alternatives, apart from
the Android Emulator and the OpenBSC-based solution, fail
regarding that last criterion because they alter the malware’s

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2011

behaviour. The fact that the Android Emulator is able to send/
receive SMSs and calls is generally suffi cient not to disturb
behaviour too much (though not perfect). OpenBSC and
OpenBTS-based solutions are the best regarding that
criterion. An OpenBTS-based solution is favoured over
OpenBSC for cost reasons.

3. GSM AND OPENBTS BACKGROUND

OpenBTS [6] is an open source Unix application meant to
offer a GSM access point to mobile devices. Let’s
immediately highlight that the project is poorly named and it
actually offers much more than a BTS.

For readers unfamiliar with GSM architecture, a basic
illustration is provided in the upper part of Figure 1, and
explained below. The mobile phone (called Mobile Station, or
MS, in GSM terminology) talks to a BTS (Base Transceiver
Station) via an air interface called Um. The BTS is hardware
equipment with little ‘intelligence’. It consists of a
transceiver, power amplifi er, antenna etc. Several BTSs are
managed by a BSC (Base Station Controller). The interface
between the BTS and BSC is called Abis. A BSC is a (smart)
software component that handles the low level radio
functions, and routes calls to an MSC (Mobile Switching
Centre). The MSC is the entity that actually connects the calls
to the networking subsystem. To do so, it communicates with
various components such as the Home Location Register
(HLR), Visitor Location Register (VLR) or, for SMS
messages, the SMSC (Short Message Service Centre). An
SMSC is a server that stores and forwards SMS messages to
the appropriate recipient. For more information, see [7, 5].

The OpenBTS project helps shortcut this MS-BTS-BSC-MSC
architecture. To do so, it uses a USRP (Universal Software
Radio Peripheral). The USRP presents the GSM air interface
to mobile phones. The USRP handles most of the BTSs (see
the middle part of Figure 1) in the GSM architecture we
described previously. Then, the source code of OpenBTS
basically consists of linking the USRP to an Asterisk PBX
(www.asterisk.org). It implements a few missing parts such as
a software transceiver, and maps the rest as much as possible
to SIP connections that Asterisk can handle. For example,
each mobile device (more precisely each IMSI – the IMSI is a
unique number stored in the SIM card) is seen by Asterisk as
a SIP client. GSM locations are mapped to SIP registrations,
call connections to SIP transactions etc. SMS messages are
handled by an instant messaging extension to SIP
(RFC 3428). In the end, the roles of the MSC, HLR and VLR,
i.e. phone switching functions, calls and mobility, are

Alternatives Simplicity Cost Spreading and leak risks Analysis reliability

Remove SIM

Offl ine

Faraday cage

Android Emulator

Java ME Emulator

OpenBSC + nanoBTS

√

√

Requires space/architecture

√

√

Requires some initial set-up

√ (free)

√ (free)

Over 5,000 USD

√ (free)

√ (free)

Approx. US$6,200

√

Slight risk

√

Slight risk (web)

√

√

Bad

Bad

Bad

√ (reasonable)

Bad

√

OpenBTS + USRP (this paper) Requires some initial set-up Approx. US$1,000 √ √

Table 1: Evaluating alternatives to an OpenBTS-based mobile malware jail.

performed by Asterisk.

For comparison purposes, the lower part of Figure 1 also
displays how a nanoBTS-OpenBSC architecture maps to
GSM. It is quite different: the role of the BTS is fully
assumed by a nanoBTS (or a microBTS), and the rest of the
GSM network is assumed entirely by OpenBSC.

Figure 1: How OpenBTS maps the GSM architecture.

The OpenBTS project consists of approximately 100,000
lines of code. The project is alive and regularly maintained,
but documentation is poor and the community is not always
extremely responsive. Finally, for the purpose of mobile
malware it is important to note that OpenBTS does not
support GPRS, EDGE or UMTS, and there are no plans for it
to do so (in the near future at least).

4. MOBILE MALWARE JAIL ARCHITECTURE
This section explains the architecture of our lab’s mobile
malware jail. It presents the general idea, and the main stages
involved in building it, but does not go into the hardware and
software installation details which are covered in [8].

Basically, the idea for this mobile malware jail is to create a
standalone local GSM operator for a few test phones and
without any connection to the external world. Consequently,
when malicious samples are uploaded to the test phones
(which correspond to mobile replication hosts) there is no risk
of contaminating, damaging or disrupting anything other than
those test phones.

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2011

In practice, the new GSM operator consists of a standard
Linux host which runs Asterisk (VoIP PABX) and OpenBTS,
attached to a USRP 1 motherboard with a daughterboard
emitting in appropriate GSM frequencies (e.g. 1800MHz).
The range of this local GSM operator is very limited (10
metres at most), which is perfect in our case because it
restricts usage of this operator to our lab only (in-house, even
neighbouring rooms do not see it). Hence, it does not disturb
real operators and also complies with French regulations on
the matter [9].

The equipment costs can be kept quite low: slightly above
US$1,000 (excluding shipping costs), most of which is made
up of the USRP mainboard and daughterboard. [8] provides
an exact listing of all required elements. It also explains all
the set-up procedures necessary to get such an operator up
and working as outlined in the following steps:

1. Modify the USRP hardware to include a 52MHz
clock1, whose accuracy is compatible with GSM. With
the default 64MHz clock onboard the USRP, the
phones simply cannot place calls. Replacing the clock
is strongly recommended.

2. Patch and build OpenBTS and its dependencies (e.g.
GnuRadio, Asterisk). There are two important
patches: one to support 52MHz clocks and the other
to use a USRP with a single daughterboard2.Overall,
this step is quite time consuming because there are
numerous dependencies, but all steps are explained in
[8].

3. Get hold of a few SIM cards for the test phones. This
step is optional because the OpenBTS network can
work with real SIMs from real operators, but, from an
AV analyst’s point of view, it is a bad idea because
there is a risk an infected test phone could be used in
error on a real GSM network and not inside the
mobile malware jail. With SIM cards using unused or
test IMSIs, this risk does not exist. The generation of
the IMSI on the SIM card can be done by a Python
script such as [10].

Then, OpenBTS and Asterisk must be confi gured to achieve a
GSM jail in which mobile malware is confi ned:

• Accept calls from the lab’s test phones. This consists of
confi guring OpenBTS to use a GSM band the phones
support, and operating with an MCC (Mobile Country
Code) and MNC (Mobile Network Code) used by the
test SIM cards. In Asterisk, the IMSI of each test phone
is added to the confi guration so that each of them is seen
as a SIP user. Each IMSI is manually assigned a phone
number. For example, below, IMSI 208301234567789
receives phone number 2102.
exten => 2102,1,Macro(dialSIP,IMSI208301234567789)

 • Accept internal SMSs, i.e. SMSs from this network to a
test phone (in this network). SMS messages are
processed by a standalone executable, named smqueue,
which is shipped with OpenBTS. Smqueue is not fully
stable and I have usually had better results with the
version from the achemeris/sms-split branch.

1 This step isn’t easy for a plain software engineer as it requires a few
skills in electronics and equipment for very fi ne soldering. An
electronics retail shop might be of some help at this stage.
2 By default, OpenBTS uses two daughterboards, but it is possible to
use a single one – which reduces costs.

• Forbid (and monitor) any other call or SMS. Any call or
SMS attempting to reach an undefi ned phone number in
our local network or any phone number in another
network must fail. Actually, this step is easy, because it is
the default behaviour. By default, calls to unknown
phone numbers are rejected and connection with another
GSM network requires additional steps [11]. As for SMS
confi nement, confi gure OpenBTS to use a dummy SMSC
address. The default value, 0000, is perfect for this.

ISDN address of source SMSC when we fake out a
source SMSC.
SMS.FakeSrcSMSC 0000

ISDN address of destination SMSC when a fake
value is needed.
SMS.DefaultDestSMSC 0000

The test phones require only a little confi guration to register
to this new GSM network. First, the phones must re-scan for
available GSM operators – at which point, if OpenBTS is up
and running and correctly confi gured, the phones should see a
new operator. The name for the new GSM network may
appear under different labels, depending on the handsets (see
Figures 2 and 3).

Select the new GSM network. This procedure is possible on
any mobile phone as long as it is not network locked. Search
in menus such as ‘Network’ or ‘Operators’.

Figure 2: iPhone scanning for local GSM operators.
OpenBTS network is labelled ‘20830’.

Figure 3: Nokia N95 scanning for local GSM operators.
OpenBTS is labelled ‘F30’.

Then, on each phone, set the address of the SMSC to be used
(typically 0000) for the mobile malware jail. There are several
ways to do this: send an AT command +CSCA [12]; use a
code snippet to access a hidden menu (e.g. *#*#4636#*#* on

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2011

some Android phones, or
**5005*7672*SMSCNUMBER# on iPhones); or
simply write a dummy SMS, try to send it and
wait for the phone to ask which address of the
SMSC to use.

From a security point of view, note that mobile
malware which infects test phones is unable to
propagate or affect other networks. On Symbian,
in theory, a piece of malware could try to switch
to another operator using the SelectNetwork
method of the RMobilePhone class, but this API
is only available from the Symbian Binary Kit and
not available in the Public API. I have never
encountered any malware using it. However, for
more security, one can use a self-generated SIM
card which has no authority over any real
operator. In that case, even if the malware is
shrewd enough to try to switch to another
network, it won’t ever actually manage to
connect.

5. MONITORING GSM
Apart from confi ning mobile malware, an
OpenBTS GSM jail is also useful for malware
analysis to trace any calls and SMS messages the
malware might silently send. Tracing SMS
messages is usually the most interesting for
mobile malware analysis. Whether the malware
sends SMSs silently (without any pop-up on the
phone) or not, the SMS cannot hide from
smqueue’s logs. A DEBUG log level is the safest
way to avoid missing anything:

Log.Level DEBUG

Log.Level.smcommands.cpp DEBUG

In the logs shown in Figure 4, Java/GoSMS is a
malicious midlet which trojans a car racing game.
It is known to send SMS messages to short codes
– at the victim’s expense.

The smqueue logs show that the malware sends
an SMS to the short code 3649 with the content
#gubki 999. Actually, the logs display the contents
of a bouncing SMS. Indeed, in that particular
case, the short code 3649 does not correspond to
any test phone in our lab, the SMS bounces and
an error report is sent back to the originator.

Consequently, the sender (the infected phone – its
IMSI is 208304424439206 and its phone number
is 2103) receives a report saying the message
could not be sent.

An AV analyst has two ways to read the content of
the SMS: either check the smqueue logs (see
Figure 4), or read new SMS messages in the
inbox of the infected phone (Figure 5).

When using the achemeris/sms-split branch of the OpenBTS
project, smqueue displays the fi elds of the SMS such as
values for UDHI (User Data Header Indicator), DA
(Destination Address), RD (Reject Duplicate), VPF (Validity
Period Format), RP (Reply Path indicator) etc.

Figure 6 shows the smqueue logs of a phone infected with
SymbOS/Zitmo.B!tr. This trojan spyware has the capability of

intercepting SMS messages and forwarding them to a spy
phone. It particularly targets mTANs used for online banking
[13]. The logs show new information an analyst might not
notice during static analysis: the trojan sends SMSs using a
Data Coding Scheme equal to 8. This is not the default
seven-bit encoding. It corresponds to UCS2 encoding, which
is rather surprising, especially for an SMS being sent to a
phone number in the United Kingdom (+44778XXXXXXX).
This might eventually mean the malware author originates
from Russia, or an Asian or Arabic country.

INFO 3074598592 smsc.cpp:121:sendSIP_init: from
 IMSI208304424439206 to 3649

..

DEBUG 3074598592 HLR.cpp:333:reloadDialplan:
 AsteriskHLR::reloadDialplan needReload=0 elapsed=1838992
DEBUG 3074598592 HLR.cpp:88:getAsteriskLine: getAsteriskLine
 cmd=”dialplan show 3649@sip-local” tag=”3649”
DEBUG 3074598592 HLR.cpp:58:getline: getline got: There is no
 existence of 3649@sip-local extension

..

NOTICE 3074598592 smqueue.cpp:1581:lookup_uri_imsi: Lookup
 phonenum ’3649’ to IMSI failed.

..

NOTICE 3074598592 smqueue.cpp:1162:bounce_message:
 Bouncing 191--xgtvp from 2103 to 3649: Phone not
 registered here. Message
DEBUG 3074598592 smqueue.cpp:845:set_qtag: Param tag=44740
DEBUG 3074598592 smqueue.cpp:626:validate_short_msg:
 MSG = MESSAGE sip:2103@127.0.0.1:5602 SIP/2.0
Via: SIP/2.0/UDP 127.0.0.1:5063;branch=123
From: 411 <sip:411@127.0.0.1>;tag=44740
To: <sip:2103@127.0.0.1>
Call-ID: UuJ3J/@127.0.0.1
CSeq: 44740 MESSAGE
Content-Type: text/plain
Content-Length: 75
Can’t send your SMS to 3649: Phone not registered here.
 Message: #gubki 999

Figure 4: Smqueue logs: short code 3649 does not exist – bounces SMS.

Figure 5: Bouncing SMS with original message sent by a phone infected
with Java/GoSMS.

INFO 3074496192 smsc.cpp:231:submitSMS: from IMSI208304424439206

message: 1 RD=1 VPF=2 RP=0 UDHI=0 SRR=0 MR=254 DA=(type=

international plan=E.164/ISDN digits=44778XXXXXXX) PI=0 DCS=8

VP=(expiration=(Thu Jun 21 15:49:44 2012)) UD=”DCS=8 UDHI=0

UDLength=32 UD=(0082000e000e00040096007600ce002e0086

0036003600a60026000400f600d6)”

Figure 6: SymbOS/Zitmo.B!tr sends an SMS using UCS2 encoding.

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2011

Apart from logging SMSs, the OpenBTS console3 is also
helpful for sending SMSs from any (fake) number. In the case
of SymbOS/Zitmo.B!tr, it is thus possible to send SMS
commands to the infected test phone. For example, we can set
another test phone (extension 2102) to spy on SMSs from the
infected phone.

OpenBTS> sendsms IMSI208304424439206 2102

enter text to send: set admin 2102

message submitted for delivery

Tracing calls can be done from Asterisk’s console. The
example in Figure 7 shows one test phone calling another
(ringing), then the status when the call is answered and a
communication is taking place.

It is possible to display details for a given channel (sip show
channel). For instance below, the transaction direction for the
second channel is set as ‘Incoming’, which means that the
corresponding user, IMSI 208300618462231, is the caller.

openbts*CLI> sip show channel 38480341@12

openbts*CLI>

* SIP Call

Curr. trans. direction: Incoming

Call-ID: 38480341@127.0.0.1

Owner channel ID: SIP/IMSI208300618462231-08b3b208

...

The Asterisk console offers several other commands, such as
‘calls’ (another way to check for calls) and ‘sip show peer’ to
get information related to a user. For example, it tells us IMSI
208300618462231 is assigned extension number 2111.

openbts*CLI> sip show peer IMSI208300618462231

openbts*CLI>

* Name : IMSI208300618462231

...

Callerid : “” <2111>

In the case of country-specifi c malware (e.g. SymbOS/Yxes
in China), it might be useful to confi gure OpenBTS with a
MCC/MNC of that particular country. This has not been
tested yet.

Finally, although there hasn’t been any use for sample
analysis so far, it is possible to sniff all low level GSM
packets. OpenBTS forwards GSM packets to the local host on
the gsmtap port (4729). Figure 8 shows the details of a GSM
Common Control Channel packet (CCCH). In particular, the
packet shows it is using an MCC of 208 (France) and MNC
30 (Unused).

3 This feature only works in the main branch and is currently broken
in the achemeris/sms-split branch.

asterisk -r

openbts*CLI> sip show channels

Peer User/ANR Call ID Format Hold Last Message

127.0.0.1 IMSI208304 2339130f4c0 .. 0x80002 (gsm|h2 No Init: INVITE

127.0.0.1 IMSI208300 38480341@12 .. 0x2 (gsm) No Rx: INVITE

2 active SIP channels

openbts*CLI> sip show channels

Peer User/ANR Call ID Format Hold Last Message

127.0.0.1 IMSI208304 2339130f4c0 ..0x80002 (gsm|h2 No Tx: ACK

127.0.0.1 IMSI208300 38480341@12 ..0x2 (gsm) No Rx: ACK

2 active SIP channels

Figure 7: A test phone calling another phone.

6. MONITORING GPRS
Unfortunately OpenBTS does not support GPRS4. This is a
problem when it comes to studying advanced malicious
samples because they often require an Internet connection.

To counter this problem, our lab uses a Wi-Fi access point
with a simulated Internet (see Figure 9). The lab test phones
must be confi gured to use Wi-Fi when they need to connect to
the Internet, and the Wi-Fi access point is placed behind a
fi rewall which blocks all traffi c to the Internet. The Internet
can be simulated by a honeypot architecture or a fake DNS
that redirects all packets to a fake web server. Any method
used to contain PC trojans or botnets can be used.

In the case of Java/Vkonpass – a malicious midlet which
fakes login to a famous Russian social network – the network
capture (Figure 10) shows that the malware attempts to send
the victim’s credentials (identifi er aa, password aa in the
example) by email to ololoe2010@REMOVED.ru.

This GPRS workaround is not perfect. First, obviously, some
old test phones do not support Wi-Fi at all. Second, some
malware (e.g. SymbOS/Yxes) searches for an Internet
connection where the data bearer matches WCDMA. As there
is no such connection – only a Wi-Fi bearer access point – the
malware is unable to connect to the Internet, which modifi es its
behaviour and consequently makes its analysis more diffi cult.

7. EXPERIMENTATION RESULTS
This section discusses the benefi ts and limitations of an
OpenBTS-based malware jail as confi gured in the previous

sections.

We measure the usefulness of this
‘black box’ analysis situation testing
it against a recent set of malicious
samples for Symbian and Java
platforms. Android malware is not
tested because (see Section 2) the
Android Emulator is good enough
for malware analysis purposes. The
OpenBTS jail was not tested against
iPhone, Windows Mobile or
BlackBerry malware either. The
reason is either because there are

4 This feature is only available in a proprietary version of
RangeNetworks. Note that OpenBSC supports GPRS/EDGE.

Figure 8: Wireshark v1.4.2 capture of GSM packets in the
mobile malware jail.

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2011

too few recent samples for those platforms, or because the
samples we had were damaged or partial (not a fully
installable package).

Figure 11 shows how much relevant information or benefi t an
analyst is able to gain from the study of a given sample in a
given environment. By ‘relevant information’, we mean
malicious key features the malware exposes, such as sending
an SMS or contacting a remote web server. Bars in blue
correspond to the amount of information found on a phone
which is offl ine (no local operator). Orange corresponds to
information found using an OpenBTS-based GSM jail (see
Section 5). Yellow corresponds to information using an
OpenBTS-based GSM jail and simulated Internet (see
Section 6).

For example, a Java/ZoomSms sample on an offl ine phone
displays a warning pop-up, asking for permission to send an
SMS to 7122. From this behaviour, the analyst knows the
malware sends SMS messages to 7122. However, as the
phone is offl ine, even if the analyst grants permission to send
the SMS, the phone is unable to successfully send the
message. On some phones, this causes important system lags
as the phone keeps trying to send the message. Furthermore,
the analyst cannot see the content of the SMS: it is not stored

Figure 9: Workaround architecture for a GPRS jail.

Figure 10: Wireshark capture of outgoing traffi c from a test phone infected with Java/Vkonpass.

in the Drafts box. But, when an OpenBTS-based GSM jail is
used, the logs of smqueue show the contents of the SMS is vis
10326. This additional information is relevant for AV analysis.
When a Wi-Fi access point is used in addition, the malware
does not reveal any more information. As a matter of fact,
Java/ZoomSms only sends SMS messages to short codes. It
does not have any web activity, so all relevant information has
already been found using the GSM jail.

So, to sum up fi ndings for Java/ZoomSms, an offl ine
environment sees it attempt to send an SMS, and an
OpenBTS-based GSM jail sees the content of the SMS. For
an analyst, one may consider that knowing a malware sends
an SMS is a more important piece of information than
knowing its content (this does not correspond to any rational
formula, but more to a general feeling for malware sending
SMSs to short codes), so Figure 11 displays a bigger blue bar
and a smaller additional orange bar. There is no yellow bar
(nothing new with Wi-Fi access), and the total of the bars add
up to 100% as all relevant information has been found.

The experiment shows the following benefi ts of an
OpenBTS-based GSM jail:

• It does not block SMSs. In several cases (e.g.
SymbOS/Feixiang, Java/Konov, Java/GoSMS,

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2011

Java/RedBrowser, Java/SmsBoxer), the fact that the
malware cannot send an SMS on an offl ine phone blocks
the malware at this point. Consequently, AV analysts are
unable to see the rest of the malicious behaviour of the
malware – it sometimes also causes important system lags
on the phone. When an OpenBTS-based GSM jail is used,
the malware is not blocked, so the rest of the behaviour
can be analysed. For example, one of our Java/Konov
samples looped indefi nitely trying to send an SMS to 4124
on an offl ine phone (and had to be switched off as this was
so intense for the phone that it wasn’t responding any
longer). With the OpenBTS GSM jail, there was no such
problem and the smqueue logs showed it was trying to
send SMSs to 4124, then 4125, then 1171, then 5537 etc.

• Content of SMS. With the OpenBTS-based GSM jail, it
is possible to read the content of the SMS, whereas it is
usually not possible if the phone is offl ine. Smqueue logs
show SymbOS/Feixiang sent a message: ‘Hui fu #0# ; Yu
zhong fei xiang’, Java/IconSuf sends ‘elzar lo’, Java/
ZoomSms sends ‘vis 10326’, Java/GoSms sends ‘#gubki
999’, Java/Picong sends ‘id96190264’ etc.

• UCS2 encoding. It is possible to check the data coding
scheme (and other parameters) of an SMS. The fact a

Figure 11: Approximate percentage of relevant AV analysis
information gathered from samples on phones in three

different environments: offl ine, OpenBTS, OpenBTS and Wi-Fi
access points.

message sends SMSs using UCS2 encoding is an
indication that the malware targets or was written by an
author in an Asian or Arabic country. For example,
SymbOS/Album and SymbOS/Zitmo use UCS2.

If we access a simulated Internet via Wi-Fi, we gain:

• Name of remote hosts. For example, SymbOS/Album
contacts hxxp://211.147.7.251 and
hxxp://s.mmclick.com. SymbOS/InSpirit contacts
hxxp://show.sj.91.com, Java/Phonox contacts
REMOVEDnox.ru etc.

• Contents of the packets. The packet capture shows that
SymbOS/InSpirit does HTTP POSTS. It also shows that
Java/Vkonpass sends the victim’s Vkonpass credentials
to ololoe2010@REMOVED.ru.

Note, of course, that all this information can be found
during static analysis. An OpenBTS GSM jail, with or
without Wi-Fi access point, does not intend to replace static
analysis (see Section 2), but black box analysis makes it
easier than close reverse engineering of samples, especially
when the malware uses encryption.

Figure 11 also shows some limitations to this mobile
malware jail (blank lines). In some cases, the malicious
behaviour of samples does not show at all or only partially.
The reasons for this are:

• There is no test phone for that operating system. For
example, SymbOS/NMPlugin requires a mobile phone
running Symbian OS 9.4 or greater and none were
available at the time of the experimentation. In that case,
the malware does not run at all, whenever offl ine or with
an OpenBTS GSM jail.

• The sample is damaged or bugged. Static analysis of the
malware may conclude that the malware has the
capability to send an SMS, connect to HTTP etc., but
because of a bug or a missing/damaged fi le in the
package, this never occurs. This scenario happened with
SymbOS/Shurufa for sure and probably with several
other samples.

• MMSs are not handled. Consequently, any sample
sending MMSs will fail to do so. This wasn’t a big issue
for SymbOS/BeSeLo though, because the message was
deferred and consequently visible in the phone’s pending
outbox.

• Malicious behaviour only shows after the sample
successfully contacts a given website or SMS short code,
but they do not respond any longer. Indeed, malware is
often active only during a short time frame. Afterwards,
the remote ends are rented for other services, patched or
simply deleted. The remote website and SMS short code
can be simulated (fake web server, fake SMS), but only if
we know what they were supposed to do, which is not
always the case. If not, the full behaviour of the sample
cannot be reproduced.

• Sample requires Internet connection using a WCDMA
bearer, not a Wi-Fi access point. In that case, the sample
fails to contact a remote server and is unable to show the
rest of its behaviour to the analyst.

This limitation has already been discussed in Section 6 and
it is the cause of several failures such as with
SymbOS/LinkHttp and SymbOS/Yxes.

AN OPENBTS GSM REPLICATION JAIL FOR MOBILE MALWARE APVRILLE

9VIRUS BULLETIN CONFERENCE OCTOBER 2011

8. CONCLUSION

Mobile malware confi nement is a big issue for anti-virus
laboratories because mobile phones have numerous ways to
escape the confi nement, be it GSM, Wi-Fi or Bluetooth
networks. So far, most solutions have shown big drawbacks:
Faraday cages and nanoBTS are expensive, simulators or
emulators are limited, and removing the SIM card or putting
the phone offl ine alters the malware’s malicious behaviour,
making analysis less accurate and more diffi cult.

Building a local GSM operator which traps mobile malware
looks like a better solution. This is now feasible, at a
reasonable cost, using the OpenBTS project. It consists of
having USRP hardware to present the GSM air interface to
test phones in the laboratory, then the OpenBTS source code
basically translates GSM communication into SIP
connections which are handled by an Asterisk PABX.
Mobile malware has no way to evade this local operator,
especially if mobile phones use SIM cards which are only
valid on that network.

This mobile malware jail has been tested on several malicious
samples with good results. Malware analysis showed relevant
information (SMSs sent to several short codes, message
contained in the SMS, encoding used etc.) which would have
been hidden in other replication environments. For malicious
samples which require a connection to the Internet, the
Internet is simulated via fake DNS and web servers behind a
Wi-Fi access point. This works around the fact that OpenBTS
does not support GPRS. The system is not perfect – in
particular, some malware won’t work over Wi-Fi – but
provided interesting results in some cases, for example,
Java/Vkonpass and SymbOS/Album.

The OpenBTS project is still evolving and there are several
ways in which it can be improved to achieve a better mobile
malware jail. Its fi rst and most obvious limitation is that it
does not support GPRS/EDGE. Thus, organizations with
higher budgets might consider using OpenBSC instead
because this other open source project supports those
technologies. In practice, having real GPRS/EDGE support
would only solve one among many other typical problems
with analysing advanced mobile malware, such as the fact
that malicious websites have a short lifespan.

Some other improvements would be useful to analysts, such
as decoding UCS2 in SMSs, better logging of SMS messages,
bug fi xes, and an MMS server.

Globally, this mobile malware jail should be useful to AV
analysts in addition to static analysis, particularly in situations
where malware obfuscates its executables or uses encryption
to conceal SMS messages, recipients or remote hosts it
contacts.

9. ACKNOWLEDGEMENTS
I wish to thank Guillaume Lovet (Fortinet), who is always an
excellent reviewer of my papers. I also thank Alexander
Chemeris (Fairwaves), an active contributor to OpenBTS, for
his review of the OpenBTS sections. Despite his own
workload, he was kind enough to send me back helpful
comments the next day! Finally, I shall always owe special
thanks to Alexandre Becoulet (Telecom Paristech) and Andy
Fung for technical help with setting up my USRP. I am not
sure I would have made it without them.

REFERENCES
[1] ITU-T. Introduction to CCITT Signalling System No.

7, March 1993. Recommendation Q.700 (03/93).

[2] Fortinet. Fortiguard Encyclopedia.
http://www.fortiguard.com/encyclopedia/index.html.

[3] Daniels, J. Faraday Cage, May 2007.
http://www.jeddaniels.com/2007/faraday-cage-part-
1/.

[4] Redon, K.; Borgaonkar, R. Femtocells : Inexpensive
devices to test UMTS security. In Hackito Ergo Sum
2011, April 2011.

[5] Golde, N.; Mulliner, C. SMS-o-Death: from
analysing to attacking mobile phones on a large
scale. In CanSecWest 2011, March 2011.
http://cansecwest.com/csw11/smsodeath_mulliner_
golde_cansecwest2011.pdf.

[6] Burgess, D.A.; Samra, H.S. The Open BTS Project,
August 2008. http://www.ahzf.de/itstuff/papers/
OpenBTSProject.pdf.

[7] Yousaf, M.; Paudyal, U.; Vehkajarvi, T.; Wu, W.;
Oza, T.; Muthuswamy, P.; Janagarajan, P.; Drake, J.;
Zhu, W. OpenMSC. Technical report, Uppsala
University, Department of Information Technology,
2010.

[8] Apvrille, A. OpenBTS for dummies v0.5, April 2011.
http://gnuradio.org/redmine/attachments/215/
fordummies.pdf.

[9] ARCEP. Les acteurs non soumis à la déclaration (in
French), September 2005. http://www.arcep.fr/index.
php?id=8055#c7795.

[10] Munaut, S. pySIM. http://cgit.osmocom.org/cgit/
pysim.

[11] Independent Network With Roaming to Standard
GSM. http://gnuradio.org/redmine/wiki/gnuradio/
OpenBTSNetworkIntegrationIndependent.

[12] Setting or Reading the Service Center Address /
SMSC Address (AT+CSCA). http://www.
developershome.com/sms/cscaCommand.asp.

[13] Apvrille, A.; Yang, K. Defeating mTANS for Profi t.
Virus Bulletin, pp.4–10, March and April 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

